Skip to main content

Using Dynamic Behavior Prediction to Guide an Evolutionary Search for Designing Two-Dimensional Cellular Automata

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

  • 1901 Accesses

Abstract

The investigations carried out about the relationships between the generic dynamic behavior of cellular automata (CA) and their computational abilities have established a very active research area. Evolutionary methods have been used to look for CA with predefined computational abilities; one in particular that has been widely studied is the ability to solve the density classification task (DCT). The majority of these studies are focused on the one-dimensional CA. It has recently been shown that the use of a heuristic guided by parameters that estimate the dynamic behavior of 1D CA can improve the evolutionary search for DCT. The present work shows the application of three parameters previously published in the one-dimensional context generalized to the two-dimensional space: sensitivity, neighborhood dominance and activity propagation were used to evolve CA able to perform the two-dimensional version of the density classification task. The results obtained show that the parameters can effectively help a genetic algorithm in searching for 2D CA. A new rule was found which performed better than others previously published for the 2D DCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andre, D., Bennett III, F., Koza, J.: Discovery by Genetic Programming of a Cellular Automata Rule that is Better than any Known Rule for the Majority Classification Problem. In: Proceedings of Genetic Programming 1996. Stanford University, Stanford (1996)

    Google Scholar 

  2. Bedau, M., McCaskill, J., Packard, N., Rasmussen, S., Adami, C., Green, D., Ikegami, T., Kaneko, K., Ray, T.: Open Problems in Artificial Life. Artificial Life 6(4), 363–376 (2000)

    Article  Google Scholar 

  3. Binder, P.: A Phase Diagram for Elementary Cellular Automata. Complex Systems 7, 241–247 (1993)

    Google Scholar 

  4. Capcarrère, M., Sipper, M., Tomassini, M.: Two-state, r=1, cellular automata that classifies density. Physical Review Letters 77(24), 4969–4971 (1996)

    Article  Google Scholar 

  5. Culik II, K., Hurd, L., Yu, S.: Computation Theoretic Aspects of Cellular Automata. Physica D 45, 357–378 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fukś, H.: Solution of the density classification problem with two cellular automata rules. Physics Review E 55, 2081R–2084R (1997)

    Article  Google Scholar 

  7. Goldberg, D.: Genetic algorithm in search, optimization and machine learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  8. Juillé, H., Pollack, J.: Coevolving the “Ideal” Trainer: Application to the Discovery of Cellular Automata Rules. In: Proceedings of Genetic Programming Conference, Madison, vol. 3 (1998)

    Google Scholar 

  9. Land, M., Belew, R.: No Perfect Two-State Cellular Automata for Density Classification Exists. Physical Review Letters 74(25), 5148–5150 (1995)

    Article  Google Scholar 

  10. Langton, C.: Computation at the Edge of Chaos: Phase Transitions and Emergent Computation. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  11. Li, W., Packard, N.: The Structure of Elementary Cellular Automata Rule Space. Complex Systems 4, 281–297 (1990)

    MathSciNet  Google Scholar 

  12. Mitchell, M., Hraber, P., Crutchfield, J.: Evolving Cellular Automata to Perform Computations: Mechanisms and Impediments. Physica D 75, 361–391 (1994)

    Article  MATH  Google Scholar 

  13. Mitchell, M.: Computation in Cellular Automata: A Selected Review. In: Nonstandard Computation. VCH Verlagsgesellschaft, Weinheim (1996)

    Google Scholar 

  14. Morales, F., Crutchfield, J., Mitchell, M.: Evolving two-dimensional cellular automata to perform density classification: a report on work in progress. Parallel Computing 27, 571–585 (2000)

    Article  Google Scholar 

  15. Oliveira, G., de Oliveira, P., Omar, N.: Evolving Solutions of the Density Classification Task in 1D Cellular Automata, Guided by Parameters that Estimate their Dynamic Behavior. In: Bedau, M.A., Mc Caskill, J.S., Packard, N.H., Rasmussen, S. (eds.) Proceeding of Artificial Life VII, pp. 428–436 (2000)

    Google Scholar 

  16. Oliveira, G., de Oliveira, P., Omar, N.: Definition and Applications of a Five-Parameter Characterization of One-Dimensional Cellular Automata Rule Space. Artificial Life 7(3), 277–301 (2001)

    Article  Google Scholar 

  17. Oliveira, G., de Oliveira, P., Omar, N.: Searching for one-dimensional cellular automata in the absence of a priori information. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 262–271. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Oliveira, G., de Oliveira, P., Omar, N.: Improving Genetic Search for One-Dimensional Cellular Automata, Using Heuristics Related to Their Dynamic Behavior Forecast. In: Proc. of the 2001 IEEE Conference on Evolutionary Computation, Seoul, South Korea, pp. 348–355. IEEE Press, Piscataway (2001)

    Google Scholar 

  19. Oliveira, G., Siqueira, S.: Parameter Characterization of Two-Dimensional Cellular Automata Rule Space. Submitted to Physica D (2005)

    Google Scholar 

  20. Packard, N.: Adaptation toward the Edge of Chaos. In: Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)

    Google Scholar 

  21. Reynaga, R., Amthauer, E.: Two-dimensional cellular automata of radius one for density classification task ρ =1/2. Pattern Recognition Letters 24, 2849–2856 (2003)

    Article  MATH  Google Scholar 

  22. Sipper, M., Capcarrère, M., Ronald, E.: A simple cellular automaton that solves the density and ordering problems. International Journal of Modern Physics 9(7), 899–902 (1998)

    Article  Google Scholar 

  23. Werfel, J., Mitchell, M., Crutchfield, J.: Resource Sharing and Coevolution in Evolving Cellular Automata. IEEE Transactions on Evolutionary Computation 4(4), 388–393 (2000)

    Article  Google Scholar 

  24. Wolfram, S.: Computation Theory of Cellular Automata. Communication in Mathematical Physics 96, 15–57 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wuensche, A.: Classifying Cellular Automata Automatically: Finding gliders, filtering, and relating space-time patterns, attractor basins and the Z parameter. Complexity 4(3), 47–66 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Oliveira, G.M.B., Siqueira, S.R.C. (2005). Using Dynamic Behavior Prediction to Guide an Evolutionary Search for Designing Two-Dimensional Cellular Automata. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_50

Download citation

  • DOI: https://doi.org/10.1007/11553090_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics