Skip to main content

May Embodiment Cause Hyper-Computation?

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

The contribution provides an example of how a formal model of some life-like functions – the so called eco-grammar (EG) system – provides a framework in which it is formally provable that the computational power of the model – under some very natural circumstances derived from the specificities of living systems, esp. from their embodiment – may overcome the computational limits of traditional computing models, perhaps also the computational power of the universal Turing machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burgin, M., Klinger, A.(guest editors): Super-recursive algorithms and hyper-computation (special issue). Theoretical Computer Science 317, 1–267 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Csuhaj-Varju, E., Kelemen, J., Kelemenova, A., Paun, G.: Eco-grammar systems – a grammatical framework for lifelike interactions. Artificial Life 3, 1–28 (1997)

    Article  Google Scholar 

  3. Csuhaj-Varju, E., Kelemenova, A.: Team behavior in eco-grammar systems. Theoretical Computer Science 209, 213–224 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  5. Langton, C.G.: Artificial life. In: Langton, C.G. (ed.) Artificial Life, pp. 1–47. Addison-Wesley, Redwood City (1989)

    Google Scholar 

  6. Ronald, E.M.A., Sipper, M., Capcarrére, M.S.: Design, observation, surprise! A test of emergence. Artificial Life 5, 225–239 (1999)

    Article  Google Scholar 

  7. Rozenberg, G., Salomaa, A.: The Mathematical Theory of L-systems. Academic Press, New York (1980)

    MATH  Google Scholar 

  8. Sieg, W.: The Church-Turing thesis. In: The MIT Encyclopedia of the Cognitive Sciences, pp. 116–117. The MIT Press, Cambridge (1999)

    Google Scholar 

  9. Wätjen, D.: Function-dependent teams in eco-grammar systems. Theoretical Computer Science 306, 39–53 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelemen, J. (2005). May Embodiment Cause Hyper-Computation?. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_4

Download citation

  • DOI: https://doi.org/10.1007/11553090_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics