Skip to main content

Topology Changes Enable Reaction-Diffusion to Generate Forms

  • Conference paper
Advances in Artificial Life (ECAL 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3630))

Included in the following conference series:

Abstract

This paper demonstrates some examples that show the ability of reaction-diffusion mechanism to code the curvature of forms of multi-cellular systems. The simulation model consists of two layers: the first generates reaction-diffusion waves and the second diffuses chemical substances. The results show that topology changes feedback information to the reaction-diffusion mechanism allowing the control of the morphogenetic process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turing, A.M.: A reaction-diffusion model for development, The chemical basis of morphogenesis. B. Phil Trans. Roy. Soc. of London; Biological Sciences, 237(5), 37-72 (1952)

    Google Scholar 

  2. Wolpert, L.: Positional Information and the Spatial Pattern of Cellular Differentiation. J. Theoret. Biol. 25, 1–47 (1969)

    Article  Google Scholar 

  3. Giere, A., Meinhardt, H.: A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)

    Article  Google Scholar 

  4. Murray, J.D.: A pattern formation mechanism and its application to mammalian coat markings. In: Vito Volterra Symposium on Mathematical Models in Biology, vol. 39, pp. 360–399 (1979)

    Google Scholar 

  5. Murray, J.D.: On pattern formation mechanisms for Lepidopteran wing patterns and mammalian coat markings. Phil. Trans. Roy. Soc. of London B 295, 473–496 (1981a)

    Article  Google Scholar 

  6. Crampin, E.J., Gaffney, E.A., Maini, P.K.: Reaction diffusion on growing domains: scenarios for robust pattern formation. Bull. Mathematical Biology 61, 1093–1120 (1999)

    Article  Google Scholar 

  7. Kondo, S.: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1995)

    Article  Google Scholar 

  8. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular biology of the cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  9. Honda, H.: The mathematical and physical analysis of morphogenesis. Kyoritsu-shuppan (2000)

    Google Scholar 

  10. Odell, M., Oster, G., Alberch, P.: The Mechanical Basis of Morphogenesis. Developmental Biology 85, 446–462 (1981)

    Article  Google Scholar 

  11. Lindenmayer, A.: Mathematical Models for Cellular Interaction in Development. Journal of theo-retical Biology 18, 280–300 (1968)

    Article  Google Scholar 

  12. Langton, C.G.: Self-reproduction in cellular auto-mata. Physica D: Nonlinear Phenomena 10(1-2), 135–144 (1984)

    Article  Google Scholar 

  13. Sims, K.: Evolving 3d morphology and behavior by competition. Artificial Life 1(4), 353–372 (1995)

    Article  Google Scholar 

  14. Furusawa, C., Kaneko, K.: Emergence of Multicellular Organisms with Dynamic Differentiation and Spatial Pattern. Artificial Life 4, 79–93 (1998)

    Article  Google Scholar 

  15. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Fourth European Conference of Artificial Life. MIT Press, Cambridge (1997)

    Google Scholar 

  16. Eggenberger, P.: Genome-pysics interaction as a new concept to reduce the number of genetic parameters in artificial evolution. In: Proceedings of the Congress of Evolutionary Computation, Canberra (2004)

    Google Scholar 

  17. Bongard, J.: Evolving modular genetic regulatory networks. In: Proceedings of The IEEE 2002 Congress on Evolutionary Computation, pp. 1872–1877 (2002)

    Google Scholar 

  18. Tomita, K., Kurokawa, H., Murata, S.: Graph Auto-mata: Natural Expression of Self-reproduction. Physica D: Nonlinear Phenomena 171(4), 197–210 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fleischer, K., Barr, A.H.: A simulation testbed for the study of multicellular development: The multiple mechanisms of morphogenesis. In: Proceedings of the Workshop on Artificial Life, Santafe, NewMexico, pp. 389–416 (1994)

    Google Scholar 

  20. Stork, D., Jackson, B., Walker, S.: Non-Optimality via Pre-adaptation in Simple Neural Systems. Artificial Life II. Addison-Wesley, Reading (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miyashita, S., Murata, S. (2005). Topology Changes Enable Reaction-Diffusion to Generate Forms. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds) Advances in Artificial Life. ECAL 2005. Lecture Notes in Computer Science(), vol 3630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11553090_17

Download citation

  • DOI: https://doi.org/10.1007/11553090_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28848-0

  • Online ISBN: 978-3-540-31816-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics