Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3696))

Included in the following conference series:

  • 1576 Accesses

Abstract

We have built a realistic computational model of the cerebellum. This model simulates the cerebellar cortex of the size 0.5mm × 1mm consisting of several types of neurons, which are modeled as conductancebased leaky integrate-and-.re units with realistic values of parameters adopted from known anatomical and physiological data. We demonstrate that the recurrent inhibitory circuit composed of granule and Golgi cells can represent a time passage by population of active granule cells, which we call “the cerebellar internal clock”. We also demonstrate that our model can explain Pavlovian eyelid conditioning, in which the cerebellar internal clock plays an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mauk, M.D., Donegan, N.H.: A model of Pavlovian eyelid conditioning based on the synaptic organization of the cerebellum. Learning & Memory 3, 130–158 (1997)

    Article  Google Scholar 

  2. Yamazaki, T., Tanaka, S.: Neural modeling of an internal clock. Neural Computation 17, 1032–1058 (2005)

    Article  MATH  Google Scholar 

  3. Ito, M.: Long-term depression. Ann. Rev. Neurosci. 12, 85–102 (1989)

    Article  Google Scholar 

  4. Ito, M.: The Cerebellum and Neuronal Control. Raven Press, New York (1984)

    Google Scholar 

  5. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Tsukahara, N., et al.: Properties of cerebello-precerebellar reverberating circuits. Brain Res. 274, 249–259 (1983)

    Article  Google Scholar 

  7. Berthier, N.E., Moore, J.W.: Cerebellar purkinje cell activity related to the classically conditioned nictitating membrane response. Exp. Brain Res. 63(2), 341–350 (1986)

    Article  Google Scholar 

  8. Medina, J.F., Mauk, M.D.: Computer simulation of cerebellar information processing. Nature Neurosci. 3, 1205–1211 (2000)

    Article  Google Scholar 

  9. Medina, J.F., et al.: Timing mechanisms in the cerebellum: Testing predictions of a large-scale computer simulation. J. Neurosci. 20(14), 5516–5525 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamazaki, T., Tanaka, S. (2005). Building the Cerebellum in a Computer. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds) Artificial Neural Networks: Biological Inspirations – ICANN 2005. ICANN 2005. Lecture Notes in Computer Science, vol 3696. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11550822_12

Download citation

  • DOI: https://doi.org/10.1007/11550822_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28752-0

  • Online ISBN: 978-3-540-28754-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics