Skip to main content

Feature Selection for Hyperspectral Data Classification Using Double Parallel Feedforward Neural Networks

  • Conference paper
Fuzzy Systems and Knowledge Discovery (FSKD 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3614))

Included in the following conference series:

Abstract

Double parallel feedforward neural network (DPFNN) based approach is proposed for dimensionality reduction, which is one of very significant problems in multi- and hyperspectral image processing and is of high potential value in lunar and Mars exploration, new earth observation system, and biomedical engineering etc. Instead of using sequential search like most feature selection methods based on neural network (NN), the new approach adopts feature weighting strategy to cut down the computational cost significantly. DPFNN is trained by a mean square error function with regulation terms which can improve the generation performance and classification accuracy. Four experiments are carried out to assesses the performance of DPFNN selector for high-dimensional data classification. The first three experiments with the benchmark data sets are designed to make comparison between DPFNN selector and some NN based selectors. In the fourth experiment, hyperspectral data, that is an airborne visible/infrared imaging spectrometer (AVIRIS) data set, is used to compare DPFNN selector with widely used forward sequential search methods using the Maximum Likelihood classifier (MLC) as criterion. Experiments show the effectiveness of the new feature selection method based on DPFNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hughes, G.F.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inform. Theory 14 (1968)

    Google Scholar 

  2. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artificial Intelligence 97, 273–324 (1997)

    Article  MATH  Google Scholar 

  3. Swain, P., King, R.: Two effective feature selection criteria for multispectral remote sensing. In: Proceedings of the 1st International Joint Conference on Pattern Recognition, Washington, DC, pp. 536–540 (1973)

    Google Scholar 

  4. Kavzoglu, T., Mather, P.M.: The role of feature selection in artificial neural network applications. Int. J. Remote Sensing 23, 2919–2937 (2002)

    Article  Google Scholar 

  5. Sheffer, D., Ultchin, Y.: Comparison of band selection results using different class separation measures in various day and night conditions. In: Proc. SPIE, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery IX, vol. 5093, pp. 452–461 (2003)

    Google Scholar 

  6. Serpico, S.B., Bruzzone, L.: A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE Trans. Geosci. Remote Sensing 39, 1360–1367 (2001)

    Article  Google Scholar 

  7. Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1, 131–156 (1997)

    Article  Google Scholar 

  8. Das, S.: Filters, wrappers and a boosting-based hybrid for feature selection. In: Proc. 18th International Conference on Machine Learning, pp. 74–81 (2001)

    Google Scholar 

  9. Belue, L.M., Bauer, K.W.: Determining input features for multilayer perceptrons. Neurocomputing 7, 111–121 (1995)

    Article  Google Scholar 

  10. Bauer, K.W., Alsing, S.G., Greene, K.A.: Feature screening using signal-to-noise ratios. Neurocomputing 31, 29–44 (2000)

    Article  Google Scholar 

  11. De, R.K., Pal, N.R., Pal, S.K.: Feature analysis: neural network and fuzzy set theoretic approaches. Pattern Recognition 30, 1579–1590 (1997)

    Article  MATH  Google Scholar 

  12. Kavzoglu, T., Mather, P.M.: The use of feature selection techniques in the context of artificial neural networks. In: Proceedings of the 26th Annual Conference of the Remote Sensing Society, Leicester, UK, (2000)

    Google Scholar 

  13. Setiono, R., Liu, H.: Neural-network feature selector. IEEE Trans. Neural Networks 8, 654–662 (1997)

    Article  Google Scholar 

  14. Verikas, A., Bacauskiene, M.: Feature selection with neural networks. Pattern Recognition Letters 23, 1323–1335 (2002)

    Article  MATH  Google Scholar 

  15. Fu, X.J., Wang, L.P.: Data dimensionality reduction with application to simplifying rbf network structure and improving classification performance. IEEE Trans. Syst., Man, Cybern. B 33, 399–409 (2003)

    Article  Google Scholar 

  16. Fu, X.J., Wang, L.P.: A ga-based novel rbf classifier with class-dependent features. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, vol. 2, pp. 1890–1894. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  17. Oh, I.-S., Lee, J.-S., Moon, B.-R.: Hybrid genetic algorithms for feature selection. IEEE Trans. Pattern Anal. Machine Intell. 26, 1424–1437 (2004)

    Article  Google Scholar 

  18. Raymer, M.L., Punch, W.F., Goodman, E.D., Kuhn, L.A., Jain, A.K.: Dimensionality reduction using genetic algorithms. IEEE Trans. Evol. Comput. 4, 164–171 (2000)

    Article  Google Scholar 

  19. Sindhwani, V., Rakshit, S., Deodhare, D., Erdogmus, D., Principe, J.C., Niyog, P.: Feature selection in mlps and svms based on maximum output information. IEEE Trans. Neural Networks 15, 937–948 (2000)

    Article  Google Scholar 

  20. He, M.: Theory, application and related problems of double parallel feedforward neural networks. PhD thesis, Xidian University, Xi’an (1993)

    Google Scholar 

  21. He, M., Bao, Z.: Neural network and information processing system: limited precision design theory. Northwestern Polytechnical University publisher, Xi’an (1998)

    Google Scholar 

  22. He, M., Xia, J.: High dimensional multispectral image fusion: classification by neural network. In: Proc. SPIE, Image Processing and Pattern Recognition in Remote Sensing, vol. 4898, pp. 36–43 (2003)

    Google Scholar 

  23. He, M.: Multispectral image processing (invited lecture). IEEE Singapore Section, Singapore (2004)

    Google Scholar 

  24. Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6, 525–533 (1993)

    Article  Google Scholar 

  25. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern Recognit. Lett. 15, 1119–1125 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

He, M., Huang, R. (2005). Feature Selection for Hyperspectral Data Classification Using Double Parallel Feedforward Neural Networks. In: Wang, L., Jin, Y. (eds) Fuzzy Systems and Knowledge Discovery. FSKD 2005. Lecture Notes in Computer Science(), vol 3614. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11540007_8

Download citation

  • DOI: https://doi.org/10.1007/11540007_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28331-7

  • Online ISBN: 978-3-540-31828-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics