Skip to main content

Role of Function Complexity and Network Size in the Generalization Ability of Feedforward Networks

  • Conference paper
Computational Intelligence and Bioinspired Systems (IWANN 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3512))

Included in the following conference series:

Abstract

The generalization ability of different sizes architectures with one and two hidden layers trained with backpropagation combined with early stopping have been analyzed. The dependence of the generalization process on the complexity of the function being implemented is studied using a recently introduced measure for the complexity of Boolean functions. For a whole set of Boolean symmetric functions it is found that large neural networks have a better generalization ability on a large complexity range of the functions in comparison to smaller ones and also that the introduction of a small second hidden layer of neurons further improves the generalization ability for very complex functions. Quasi-random generated Boolean functions were also analyzed and we found that in this case the generalization ability shows small variability across different network sizes both with one and two hidden layer network architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan/IEEE Press (1994)

    Google Scholar 

  2. Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Computation 1, 151–160 (1989)

    Article  Google Scholar 

  3. Lawrence, S., Giles, C.L., Tsoi, A.C.: What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation. Technical Report UMIACS-TR-96-22 and CS-TR-3617, Institute for Advanced Computer Studies, Univ. of Maryland (1996)

    Google Scholar 

  4. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in Neural Networks: Backpropagation, Conjugate Gradient, and Early Stopping. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13, pp. 402–408. MIT Press, Cambridge (2001)

    Google Scholar 

  5. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: Moody, J.E., Hanson, S.J., Lippmann, R.P. (eds.) Advances in Neural Information Processing Systems, vol. 4, pp. 950–957. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  6. Prechelt, L.: Automatic Early Stopping Using Cross Validation: Quantifying the Criteria. Neural Networks 11, 761–767 (1998)

    Article  Google Scholar 

  7. Setiono, R.: Feedforward neural network construction using cross-validation. Neural Computation 13, 2865–2877 (2001)

    Article  MATH  Google Scholar 

  8. Bartlett, P.L.: For valid generalization the size of the weights is more important than the size of the network. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems, vol. 9, pp. 134–140. MIT Press, Cambridge (1997)

    Google Scholar 

  9. Franco, L., Anthony, M.: On a generalization complexity measure for Boolean functions. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, pp. 973–978. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  10. Wegener, I.: The complexity of Boolean functions. Wiley and Sons Inc, Chichester (1987)

    MATH  Google Scholar 

  11. Siu, K.Y., Roychowdhury, V.P., Kailath, T.: Depth-Size Tradeoffs for Neural Computation. IEEE Transactions on Computers 40, 1402–1412 (1991)

    Article  MathSciNet  Google Scholar 

  12. Franco, L., Cannas, S.A.: Non glassy ground-state in a long-range antiferromagnetic frustrated model in the hypercubic cell. Physica A 332, 337–348 (2004)

    Article  MathSciNet  Google Scholar 

  13. Franco, L., Cannas, S.A.: Generalization and Selection of Examples in Feedforward Neural Networks. Neural Computation 12(10), 2405–2426 (2000)

    Article  Google Scholar 

  14. Franco, L., Cannas, S.A.: Generalization Properties of Modular Networks: Implementing the Parity Function. IEEE Transactions on Neural Networks 12, 1306–1313 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franco, L., Jerez, J.M., Bravo, J.M. (2005). Role of Function Complexity and Network Size in the Generalization Ability of Feedforward Networks. In: Cabestany, J., Prieto, A., Sandoval, F. (eds) Computational Intelligence and Bioinspired Systems. IWANN 2005. Lecture Notes in Computer Science, vol 3512. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11494669_1

Download citation

  • DOI: https://doi.org/10.1007/11494669_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26208-4

  • Online ISBN: 978-3-540-32106-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics