Skip to main content

Majority and Unanimity in Synchronous Networks with Ubiquitous Dynamic Faults

  • Conference paper
Structural Information and Communication Complexity (SIROCCO 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3499))

Abstract

In this paper we are interested in synchronous distributed systems subject to transient and ubiquitous failures. This includes systems where failures will occur on any communication link, systems where every processor will fail at one time or another, etc., and, following a failure, normal functioning can resume after a finite (although unpredictable) amount of time. Notice that these cases cannot be handled by the traditional component failure models.

The model we use is the transmission failure model, known also as the dynamic faults model. Using this model, we study the fundamental problem of agreement in synchronous systems of arbitrary topology.We establish bounds on the number of dynamic faults that make any non-trivial form of agreement (even strong majority) impossible; in turn, these bounds express connectivity requirements which must be met to achieve any meaningful form of agreement. We also provide, constructively, bounds on the number of dynamic faults in spite of which any non-trivial form of agreement (even unanimity) is possible.

These bounds are shown to be tight for a large class of networks, that includes hypercubes, toruses, rings, and complete graphs; incidentally, we close the existing gap between possibility and impossibility of non-trivial agreement in complete graphs in presence of dynamic Byzantine faults.

None of these results is derivable in the component failure models; in particular, all our possibility results hold in situations for which those models indicate impossibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-recovery model. Distributed Computing 13(2), 99–125 (2000)

    Article  Google Scholar 

  2. Aguilera, M.K., Toueg, S.: A simple bivalency proof that t-resilient consensus requires t+1 rounds. Information Processing Letters 71, 155–158 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bar-Joseph, Z., Ben-Or, M.: A tight lower bound for randomized synchronous consensus. In: Proc. ACM Symp. on Principles of Distributed Computing (PODC 1998), Puerto Vallarta, pp. 193–199 (1998)

    Google Scholar 

  4. Ben-Or, M., Ron, D.: Agreement in presence of faults on networks of bounded degree. Information Processing Letters 57(6), 329–334 (1996)

    Article  MATH  Google Scholar 

  5. Chlebus, B.S., Diks, K., Pelc, A.: Broadcasting in synchronous networks with dynamic faults. Networks 27, 309–318 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: From simple message diffusion to Byzantine agreement. Information and Computation 118(1), 158–179 (1995)

    Article  MathSciNet  Google Scholar 

  7. De Marco, G., Rescigno, A.: Tighter bounds on broadcasting in torus networks in presence of dynamic faults. Parallel Processing Letters 10, 39–49 (2000)

    Article  MATH  Google Scholar 

  8. De Marco, G., Vaccaro, U.: Broadcasting in hypercubes and star graphs with dynamic faults. Information Processing Letters 66, 309–318 (1998)

    Article  Google Scholar 

  9. Dobrev, S.: Computing input multiplicity in anonymous synchronous networks with dynamic faults. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 137–148. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Dobrev, S.: Communication-efficient broadcasting in complete networks with dynamic faults. In: Proc. 9th Coll. on Structural Information and Communication complexity (SIROCCO 2002), pp. 101–113 (2002)

    Google Scholar 

  11. Dobrev, S., Vrt’o, I.: Optimal broadcasting in hypercubes with dynamic faults. Information Processing Letters 71, 81–85 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dobrev, S., Vrt’o, I.: Optimal broadcasting in even tori with dynamic faults. Parallel Processing Letters 12, 17–22 (2002)

    Article  MathSciNet  Google Scholar 

  13. Dolev, D.: The Byzantine generals strike again. J. Algorithms 3(1), 14–30 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement. In: Proc. 14th ACM Symp. on Theory of Computing (STOC 1982), pp. 401–407 (1982)

    Google Scholar 

  15. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of bounded degree. SIAM J. Computing 17(5), 975–988 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Fischer, M.J., Lynch, N.A.: A lower bound for the time to assure interactive consistency. Information Processing Letters 14(4), 183–186 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  17. Fischer, M.J., Lynch, N.A., Merritt, M.: Easy impossibility proofs for distributed consensus problems. Distributed Computing 1(1), 26–39 (1986)

    Article  MATH  Google Scholar 

  18. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2) (1985)

    Google Scholar 

  19. Fraigniaud, P., Peyrat, C.: Broadcasting in a hypercube when some calls fail. Information Processing Letters 39, 115–119 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gasienic, L., Pelc, A.: Broadcasting with linearly bounded faults. Discrete Applied Mathematics 83, 121–133 (1998)

    Article  MathSciNet  Google Scholar 

  21. Garay, J., Moses, Y.: Fully polynomial Byzantine agreement for n > 3t processors in t + 1 rounds. SIAM J. Computing 27(1), 247–290 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Guerraoui, R., Levy, R.R.: Robust emulation of shared memory in a crash-recovery model. In: Proc. 24th Int. Conf. on Dist. Computing Systems (ICDCS 2004), pp. 400–407 (2004)

    Google Scholar 

  23. Hadzilacos, V.: Connectivity requirements for Byzantine agreement under restricted types of failures. Distributed Computing 2, 95–103 (1987)

    Article  Google Scholar 

  24. Kralovic, R., Kralovic, R., Ruzicka, P.: Broadcasting with many faulty links. In: Proc. 10th Coll. on Structural Information and Communication complexity (SIROCCO 2003), pp. 211–222 (2003)

    Google Scholar 

  25. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Programming Languages and Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  26. Liptak, Z., Nickelsen, A.: Broadcasting in complete networks with dynamic edge faults. In: Proc. 4th Int. Conf. on Principles of Distributed Systems (OPODIS 2000), Paris, pp. 123–142 (2000)

    Google Scholar 

  27. Moses, Y., Rajsbaum, S.: A Layered Analysis of Consensus. SIAM J. Computing 31(4), 989–1021 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Perry, K.J., Toueg, S.: Distributed agreement in the presence of processor and communication faults. IEEE Trans. Software Engineering SE-12 (3), 477–482 (1986)

    Google Scholar 

  29. Santoro, N., Widmayer, P.: Time is not a healer. In: Proc. 6th Symposium on Theoretical Aspects of Computer Science (STACS 1989), pp. 304–313 (1989)

    Google Scholar 

  30. Santoro, N., Widmayer, P.: Distributed function evaluation in the presence of transmission faults. In: Proc. Int. Symposium on Algorithms (SIGAL 1990), pp. 358–367 (1990)

    Google Scholar 

  31. Schmid, U., Weiss, B.: Formally verified Byzantine agreement in presence of link faults. In: Proc. 22nd Int. Conf. on Distributed Computing Systems (ICDCS 2002), pp. 608–616 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Santoro, N., Widmayer, P. (2005). Majority and Unanimity in Synchronous Networks with Ubiquitous Dynamic Faults. In: Pelc, A., Raynal, M. (eds) Structural Information and Communication Complexity. SIROCCO 2005. Lecture Notes in Computer Science, vol 3499. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11429647_21

Download citation

  • DOI: https://doi.org/10.1007/11429647_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26052-3

  • Online ISBN: 978-3-540-32073-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics