Skip to main content

An Origin of CMR: Competing Phases and Disorder-Induced Insulator-to-Metal Transition in Manganites

  • Chapter
  • First Online:
Local-Moment Ferromagnets

Part of the book series: Lecture Notes in Physics ((LNP,volume 678))

Abstract

We theoretically explore the mechanism of the colossal magnetoresistance in manganese oxides by explicitly taking into account the phase competition between the double-exchange ferromagnetism and the charge-ordered insulator. We find that quenched disorder causes a drastic change of the multicritical phase diagram by destroying the charge-ordered state selectively. As a result, there appears a nontrivial phenomenon of the disorder-induced insulator-to-metal transition in the multicritical regime. On the contrary, the disorder induces a highly-insulating state above the transition temperature where charge-ordering fluctuations are much enhanced. The contrasting effects provide an understanding of the mechanism of the colossal magnetoresistance. The obtained scenario is discussed in comparison with other theoretical proposals such as the polaron theory, the Anderson localization, the multicritical-fluctuation scenario, and the percolation scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.P. Ramirez: J. Phys. Cond. Matt. 9, 8171 (1997), and references therein

    Article  ADS  Google Scholar 

  2. Y. Tokura, N. Nagaosa: Science 288, 462 (2000), and references therein

    Article  ADS  Google Scholar 

  3. E. Dagotto, T. Hotta, A. Moreo: Phys. Rep. 344, 1 (2001), and references therein

    Article  ADS  Google Scholar 

  4. C. Zener: Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  5. N. Furukawa: in Physics of Manganites, edited by T. Kaplan and S. Mahanti (Plenum, New York, 1999), and references therein

    Google Scholar 

  6. C.M. Varma: Phys. Rev. B 54, 7328 (1996)

    Article  ADS  Google Scholar 

  7. A.J. Millis, P.B. Littlewood, B.I. Shraiman: Phys. Rev. Lett. 74, 5144 (1995); A.J. Millis, R. Mueller, B.I. Shraiman: Phys. Rev. B 54, 5405 (1996)

    Article  ADS  Google Scholar 

  8. H. Röder, J. Zang, A.R. Bishop: Phys. Rev. Lett. 76, 1356 (1996); J. Zang, A.R. Bishop, H. Röder: Phys. Rev. B 53, R8840 (1996)

    Article  ADS  Google Scholar 

  9. B.M. Letfulov, J.K. Freericks: Phys. Rev. B 64, 174409 (2001)

    Article  ADS  Google Scholar 

  10. E.E. Narimanov, C.M. Varma: Phys. Rev. B 65, 024429 (2002)

    Article  ADS  Google Scholar 

  11. S. Murakami, N. Nagaosa: Phys. Rev. Lett. 90, 197201 (2003)

    Article  ADS  Google Scholar 

  12. A. Moreo, S. Yunoki, E. Dagotto: Science 283, 2034 (1999)

    Article  Google Scholar 

  13. J. Burgy et al: Phys. Rev. Lett. 87, 277202 (2001)

    Article  ADS  Google Scholar 

  14. F. Millange et al:, Chem. Mater. 10, 1974 (1998)

    Article  Google Scholar 

  15. T. Nakajima et al:, J. Phys. Soc. Jpn. 71, 2843 (2002)

    Article  ADS  Google Scholar 

  16. D. Akahoshi et al: Phys. Rev. Lett. 90, 177203 (2003)

    Article  ADS  Google Scholar 

  17. Y. Tomioka, Y. Tokura: Phys. Rev. B 66, 104416 (2002)

    Article  ADS  Google Scholar 

  18. Y. Tomioka et al: Phys. Rev. B 68, 094417 (2003)

    Article  ADS  Google Scholar 

  19. A. Barnabé et al., Appl. Phys. Lett. 71, 3907 (1997); B. Raveau, A. Maignan, C. Martin: J. Solid State Chem. 130, 162 (1997)

    Article  ADS  Google Scholar 

  20. T. Kimura et al: Phys. Rev. Lett. 83, 3940 (1999)

    Article  ADS  Google Scholar 

  21. Y. Moritomo et al: Phys. Rev. B 60, 9220 (1999)

    Article  ADS  Google Scholar 

  22. T. Katsufuji et al: J. Phys. Soc. Jpn. 68, 1090 (1999)

    Article  ADS  Google Scholar 

  23. J.A. Vergés, V. Martín-Mayor, L. Brey: Phys. Rev. Lett. 88, 136401 (2002)

    Article  ADS  Google Scholar 

  24. Y. Motome, N. Furukawa, N. Nagaosa: Phys. Rev. Lett. 91, 167204 (2003)

    Article  ADS  Google Scholar 

  25. Y. Motome, N. Furukawa: J. Phys. Soc. Jpn. 70, 1487 (2001); 70, 2802 (2001). The Ising symmetry enables us to study finite-temperature phase transitions in 2D systems

    Article  ADS  Google Scholar 

  26. Y. Motome, N. Furukawa, N. Nagaosa: J. Mag. Mag. Mat., 272-276, 1805 (2004)

    Article  ADS  Google Scholar 

  27. The tetracritical phase diagram can be turned into the bicritical one by explicitly including a competing term between FM and CO, which makes the coexisting F + COI state unstable [26]. The effects of disorder are qualitatively common to both tetracritical and bicritical cases, and therefore we focus on the tetracritical case in this Contribution

    Google Scholar 

  28. Y. Motome, N. Furukawa: Phys. Rev. B 68, 144432 (2003)

    Article  ADS  Google Scholar 

  29. N. Furukawa, Y. Motome, N. Nagaosa: to be published in Physica B, cond-mat/0406504

    Google Scholar 

  30. P. Dai et al: Phys. Rev. Lett. 85, 2553 (2000)

    Article  ADS  Google Scholar 

  31. C.P. Adams et al: Phys. Rev. Lett. 85, 3954 (2000)

    Article  ADS  Google Scholar 

  32. S. Mori, private communications

    Google Scholar 

  33. S. Yunoki, A. Moreo, E. Dagotto: Phys. Rev. Lett. 81, 5612 (1998)

    Article  ADS  Google Scholar 

  34. H. Aliaga et al: Phys. Rev. B 68, 104405 (2003)

    Article  ADS  Google Scholar 

  35. J. Burgy, A. Moreo, E. Dagotto: Phys. Rev. Lett. 92, 097202 (2004)

    Article  ADS  Google Scholar 

  36. C. Sen, G. Alvarez, E. Dagotto: preprint (cond-mat/0401619)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Markus Donath Wolfgang Nolting

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Motome, Y., Furukawa, N., Nagaosa, N. An Origin of CMR: Competing Phases and Disorder-Induced Insulator-to-Metal Transition in Manganites. In: Donath, M., Nolting, W. (eds) Local-Moment Ferromagnets. Lecture Notes in Physics, vol 678. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11417255_5

Download citation

  • DOI: https://doi.org/10.1007/11417255_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27286-1

  • Online ISBN: 978-3-540-31516-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics