Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 671))

Abstract

The collective dynamics of groups of coupled dynamical systems is of great interest for understanding spontaneous pattern formation in biological and many other systems; see for example [58]. One can learn a lot about such systems by first studying idealized cases where the systems are perfectly identical; this approach has been very successful in understanding general properties of synchronization as well as particular applications; see for example [77]. In this chapter we consider how this can lead to the appearance of attractors with riddled basins. These basins appear because symmetries of dynamical systems force the presence of invariant submanifolds; the attractors within invariant manifolds may be only weakly attracting transverse to the invariant manifold and this leads to a basin structure that is, roughly speaking, full of holes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.C. Alexander, J.A. Yorke, Z. You and I. Kan,: Riddled Basins. Int. Journal of Bifurcations and Chaos 2 (1992), 795–813.

    Google Scholar 

  2. J.C. Alexander, B.R. Hunt, I. Kan, and J.A. Yorke, Intermingled basins for the triangle map Ergodic Theory Dynam. Systems 16 (1996), no. 4, 651–662.

    Google Scholar 

  3. P. Ashwin: Attractors stuck on to invariant subspaces Phys. Lett. A 209, 338–344 (1995).

    Article  Google Scholar 

  4. P. Ashwin: Cycles homoclinic to chaotic sets; robustness and resonance Chaos 7, 207–220 (1997).

    Article  PubMed  Google Scholar 

  5. P. Ashwin and P.J. Aston: Blowout bifurcations of codimension two. Physics Letters A 244, 261–270 (1998).

    Article  Google Scholar 

  6. P. Ashwin, P.J. Aston, P. and M. Nicol: On the unfolding of a blowout bifurcation. Physica D 111, 81–95 (1998).

    Article  Google Scholar 

  7. P. Ashwin and M. Breakspear: Anisotropic properties of riddled basins. Phys. Lett. A 280, 139–145 (2001).

    Article  Google Scholar 

  8. P. Ashwin, J. Buescu and I.N. Stewart: Bubbling of attractors and synchronisation of oscillators. Phys. Lett. A 193, 126–139 (1994).

    Article  Google Scholar 

  9. P. Ashwin, J. Buescu and I. Stewart: From attractor to chaotic saddle: a tale of transverse instability. Nonlinearity 9, 703–737 (1996).

    Article  Google Scholar 

  10. P. Ashwin, W. Chambers and G. Petkov: Lossless digital filter overflow oscillations; approximation of invariant fractals. Int. J. Bifur. Chaos 7, 2603–2610 (1997).

    Article  Google Scholar 

  11. P. Ashwin, E. Covas and R.K. Tavakol: Transverse instability for non-normal parameters. Nonlinearity 12, 563–577 (1999).

    Article  Google Scholar 

  12. P. Ashwin, X.-C. Fu and J.R. Terry: Riddling and invariance for discontinuous maps preserving Lebesgue measure. Nonlinearity 15, 633-645 (2002).

    Article  Google Scholar 

  13. P. Ashwin and A.M. Rucklidge: Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection. Physica D 122, 134–154 (1998).

    Article  Google Scholar 

  14. P. Ashwin, A.M. Rucklidge and R. Sturman: Cycling attractors of coupled cell systems and dynamics with symmetry. In: Proceedings of Workshop on Synchronization, Crimea, 2002. Eds A. Pikovsky and Y. Maistrenko, Kluwer (2003).

    Google Scholar 

  15. P. Ashwin and R. Sturman: Decelerating defects and non-ergodic critical behaviour in a unidirectionally coupled map lattice. Phys Letters A 309, 423–434 (2003).

    Article  Google Scholar 

  16. P. Ashwin and J.R. Terry: On riddling and weak attractors. Physica D 142, 87–100 (2000).

    Article  Google Scholar 

  17. P.J. Aston and M. Dellnitz: Symmetry breaking bifurcation of chaotic attractors. Int. J. Bif. Chaos 5, 1643-1676 (1995).

    Article  Google Scholar 

  18. V. Baladi and M. Viana: Strong stochastic stability and rate of mixing for unimodal maps Ann. Sci. école Norm. Sup. (4) 29, 483–517 (1996).

    Google Scholar 

  19. E. Barany, M. Dellnitz and M. Golubitsky: Detecting the symmetry of attractors. Physica D 67, 66–87 (1993).

    Article  Google Scholar 

  20. E. Barreto, B.R. Hunt, C. Grebogi and J. Yorke: From high dimensional chaos to stable periodic orbits: the structure of parameter space. Phys. Rev. Lett. 78, 4561–4564 (1997).

    Article  Google Scholar 

  21. G.-I. Bischi and L. Gardini: Role of invariant and minimal absorbing areas in chaos synchronization. Phys. Rev. E 58, 5710–5719 (1998).

    Article  Google Scholar 

  22. M. Benedicks and L. Carleson: On iterations of $1-ax^2$ on $[-1,1]$. Ann. Math.(2)122, 1–25 (1985).

    Google Scholar 

  23. J. Buescu: Exotic Attractors. (Birkhäuser Verlag, Basel 1997).

    Google Scholar 

  24. Y. Cao: A note about Milnor attractor and riddled basin. Chaos, Solitons and Fractals 19, 759–764 (2004).

    Google Scholar 

  25. P. Chossat and M. Golubitsky: Symmetry increasing bifurcation of chaotic attractors, Physica D 32, 423–436 (1988).

    Article  Google Scholar 

  26. E. Covas, P. Ashwin and R.K. Tavakol: Non-normal parameter blowout bifurcation in a truncated mean field dynamo. Phys. Rev. E 56, 6451–6458 (1997).

    Article  Google Scholar 

  27. M. Dellnitz, M. Field, M. Golubitsky, A. Hohmann and J. Ma: Cycling chaos, IEEE Trans. Circuits and Systems-I. 42, 821–823 (1995).

    Article  Google Scholar 

  28. M. Ding and W. Yang: Observation of intermingled basins in coupled oscillators exhibiting synchronized chaos. Phys. Rev. E 54, 2489–2494 (1996).

    Article  Google Scholar 

  29. J.-P. Eckmann and D. Ruelle: Ergodic Theory of Chaos and Strange Attractors. Rev. Mod. Phys. 57, 617–656 (1985).

    Article  Google Scholar 

  30. J.D. Farmer: Sensitive dependence on parameters in nonlinear dynamics. Phys. Rev. Lett. 55, 351–354 (1985).

    Article  PubMed  Google Scholar 

  31. M. Field. Lectures on Dynamics, Bifurcation and symmetry. Pitman Research Notes in Mathematics, 356, Pitman (1996).

    Google Scholar 

  32. K. Falconer. Fractal Geometry (John Wiley & sons, Chichester 1990).

    Google Scholar 

  33. M. Golubitsky and I. Stewart. The symmetry perspective (Birkhäuser Verlag, Boston 2002).

    Google Scholar 

  34. C. Grebogi, S.W McDonald, E. Ott & J.A. Yorke. Exterior dimensions of fat fractals Phys. Lett. A 110:1–4 (1985).

    Article  Google Scholar 

  35. J. Guckenheimer and P. Holmes. Structurally stable heteroclinic cycles, Math. Proc. Camb. Phil. Soc. 103:189–192 (1988).

    Google Scholar 

  36. M. Hasler, Y. Maistrenko and O. Popovych: Simple example of partial synchronization of chaotic systems. Phys. Rev. E 58, 6843–6346 (1998).

    Article  Google Scholar 

  37. J.F. Heagy, N. Platt and S.M. Hammel: Characterization of on-off intermittency. Phys. Rev. E 49, 1140–1150 (1994).

    Article  Google Scholar 

  38. J.F. Heagy, T. Carroll and L. Pecora: Experimental and numerical evidence for riddled basins in coupled chaotic systems. Phys. Rev. Lett. 73, 3528–31 (1994).

    PubMed  Google Scholar 

  39. B.R. Hunt: The Prevalence of Continuous Nowhere Differentiable Functions Proc. Amer. Math. Soc. 122, 711–717 (1994).

    Google Scholar 

  40. M. Jakobson: Absolutely continuous invariant measures for one parameter families of one-dimensional maps, Comm. Math. Phys. 81, 39–88 (1981).

    Article  Google Scholar 

  41. I. Kan: Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin. Bull. Am. Math. Soc. 31, 68–74 (1994).

    Google Scholar 

  42. K. Kaneko: On the strength of attractors in a high-dimensional system: Milnor attractor network, robust global attraction, and noise-induced selection. Physica D 124, 322–344 (1998).

    Article  Google Scholar 

  43. K. Kaneko: Mean field fluctuation of a network of chaotic elements. Physica D 55, 368–384 (1992).

    Article  Google Scholar 

  44. J.L. Kaplan and J.A. Yorke: Chaotic behaviour of multidimensional difference equations. In Functional differential equations and approximations of fixed points, (H.-O. Peitgen and H.-O. Walther, eds) Springer Lecture Notes in Maths 730 (1979).

    Google Scholar 

  45. L. Kocarev, A. Shang and L.O. Chua: Transitions in dynamical regimes by driving: a unified method of control and synchronisation of chaos. Intl. J. Bifurcation and Chaos 3, 479–483 (1993).

    Article  Google Scholar 

  46. M. Krupa and I. Melbourne: Asymptotic stability of heteroclinic cycles in systems with symmetry, Erg. Th. Dyn. Sys. 15, 121–147 (1995).

    Google Scholar 

  47. M. Krupa: Robust heteroclinic cycles, Journal of Nonlinear Science 7, 129–176 (1997).

    Google Scholar 

  48. Y.-C. Lai, C. Grebogi, J.A. Yorke and S.C. Venkataramani: Riddling bifurcation in chaotic dynamical systems. Phys. Rev. Lett. 77, 55–58 (1996).

    Article  PubMed  Google Scholar 

  49. Y.-C. Lai: Pseudo-riddling in chaotic systems. Phys. D 150, 1–13 (2001).

    Article  Google Scholar 

  50. A. Lasota and J.A. Yorke: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481–488 (1973).

    Google Scholar 

  51. Yu.L. Maistrenko, V.L. Maistrenko, A. Popovich and E. Mosekilde: Transverse instability and riddled basins in a system of two coupled logistic maps. Phys. Rev. E 57, 2713–2724 (1998).

    Article  Google Scholar 

  52. Yu.L. Maistrenko, V.L. Maistrenko, A. Popovich and E. Mosekilde: Role of the absorbing area in chaotic synchronization. Phys. Rev. Lett. 80, 1638–1641 (1998).

    Article  Google Scholar 

  53. R. Mañé: Ergodic Theory and Differentiable Dynamics. (Springer-Verlag, Berlin 1987).

    Google Scholar 

  54. I. Melbourne: An example of a non-asymptotically stable attractor. Nonlinearity 4, 835–844 (1991).

    Article  Google Scholar 

  55. I. Melbourne, M. Dellnitz and M. Golubitsky: The Structure of Symmetric Attractors,Arch. Rational. Mech. Anal. 123, 75–98 (1993).

    Article  Google Scholar 

  56. J. Milnor: On the concept of attractor. Commun. Math. Phys. 99, 177–195 (1985); Comments Commun. Math. Phys. 102, 517–519 (1985).

    Article  Google Scholar 

  57. L. Mora and M. Viana: Abundance of strange attractors. Acta Math. 171, 1–71 (1993).

    Google Scholar 

  58. E. Mosekilde, Y. Maistrenko and D. Postnov: Chaotic synchronization. Applications to living systems. (World Scientific Publishing, River Edge NJ, 2002).

    Google Scholar 

  59. H. Nakajima and Y. Ueda: Riddled basins of the optimal states in learning dynamical systems. Physica D 99, 35–44 (1996).

    Article  Google Scholar 

  60. V.I. Oseledec: A multiplicative ergodic theorem: Liapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 19, 197–231, (1968).

    Google Scholar 

  61. E. Ott: Chaos in Dynamical Systems (Second edition) (Cambridge University Press 2002).

    Google Scholar 

  62. E. Ott, J.C. Sommerer, J. Alexander, I. Kan and J.A. Yorke: Scaling behaviour of chaotic systems with riddled basins. Phys. Rev. Lett. 71, 4134–4137 (1993).

    Article  PubMed  Google Scholar 

  63. E. Ott, J.C. Sommerer, J. Alexander, I. Kan and J.A. Yorke: A transition to chaotic attractors with riddled basins. Physica D 76, 384–410 (1994).

    Article  Google Scholar 

  64. E. Ott and J.C. Sommerer: Blowout bifurcations: the occurrence of riddled basins and on-off intermittency. Phys. Lett. A 188, 39–47 (1994).

    Article  Google Scholar 

  65. M.W. Parker: Undecidability in Rn; riddled basins, the KAM tori and the stability of the solar system. Philos. Sci. 70, 359–382 (2003).

    Article  Google Scholar 

  66. Y.B. Pesin: Characteristic Liapunov exponents and smooth ergodic theory. Russian Math. Surv. 32, 55–114 (1978).

    Google Scholar 

  67. A.S. Pikovsky: On the interaction of strange attractors. Z. Phys. B, 55, 149–154 (1984).

    Article  Google Scholar 

  68. A.S. Pikovsky and P. Grassberger: Symmetry breaking of coupled chaotic attractors. J. Phys. A, 24, 4587–4597 (1991).

    Article  Google Scholar 

  69. N. Platt, E. Spiegel and C. Tresser: On-off intermittency; a mechanism for bursting. Phys. Rev. Lett. 70, 279–282 (1993).

    Article  PubMed  Google Scholar 

  70. N. Platt, S.M. Hammel and J.F. Heagy: Effects of additive noise on on-off intermittency. Phys. Rev. Lett. 72, 3498–3501 (1994).

    Article  PubMed  Google Scholar 

  71. C. Pugh and M. Shub: Ergodic attractors. Trans. Am. Math. Soc. 312, 1–54 (1989).

    Google Scholar 

  72. D.A. Rand, H. Wilson and J. McGlade: Dynamics and evolution: evolutionarily stable attractors, invasion exponents and phenotype dynamics. Phil. Trans. R. Soc. Lond. B, 343, 261–283 (1994).

    Google Scholar 

  73. D. Ruelle: Analyticity properties of the characteristic exponents of random matrix products, Advances in Math. 32, 68–80 (1979).

    Article  Google Scholar 

  74. D. Ruelle: Chaotic evolution and strange attractors, (Lezione Lincee, Cambridge University Press, 1989).

    Google Scholar 

  75. R.J. Sacker and G.R. Sell: The spectrum of an invariant submanifold. J. Diff. Equations 38, 135–160 (1980).

    Article  Google Scholar 

  76. A. Saito and K. Kaneko: Inaccessibility and indecidability in computation, geometry and dynamical systems. Physica D 155, 1–33 (2001).

    Article  Google Scholar 

  77. S.H. Strogatz: Synch: the emerging science of spontaneous order, (Hyperion Press 2003).

    Google Scholar 

  78. K. Sygmund: Generic properties of invariant measures for Axiom A diffeomorphisms. Inv. Math. 11, 99–109 (1970).

    Article  Google Scholar 

  79. A.V. Taborev, Y.L. Maistrenko, and E. Mosekilde: Partial synchronization in a system of coupled logistic maps. Int. J. Bifurcation and Chaos 10, 1051–1066 (2000).

    Google Scholar 

  80. M. Timme, F. Wolf, and T. Geisel: Prevalence of unstable attractors in networks of pulse-coupled oscillators, Phys. Rev. Lett. 89, 154105 (2002).

    Article  PubMed  Google Scholar 

  81. S.C. Venkataramani, B.R. Hunt, E. Ott, D.J. Gauthier and J.C. Bienfang: Transitions to bubbling of chaotic systems. Phys. Rev. Lett. 77, 5361–5364 (1996).

    Article  PubMed  Google Scholar 

  82. R. L. Wheeden and A. Zygmund: Measure and integral. (Marcel Dekker Inc, New York 1977).

    Google Scholar 

  83. M. Woltering and M. Markus: Riddled basins of coupled elastic arches. Phys. Lett. A 260, 453–461 (1999).

    Article  Google Scholar 

  84. H. Yamada and T. Fujisaka: Stability theory of synchronised motion in coupled-oscillator systems. Prog. Theor. Phys. 70, 1240–1248 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Ashwin, P. Riddled Basins and Coupled Dynamical Systems. In: Dynamics of Coupled Map Lattices and of Related Spatially Extended Systems. Lecture Notes in Physics, vol 671. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11360810_8

Download citation

Publish with us

Policies and ethics