Skip to main content

Hyperforin: To Be or Not to Be an Activator of TRPC(6)

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology Vol. 169

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 169))

Abstract

Meantime, it is well accepted that hyperforin, the chemical instable phloroglucinol derivative of Hypericum perforatum, St. John’s wort, is the pharmacophore of St. John’s wort extracts. With the decline of this scientific discussion, another controversial aspect has been arisen, the question regarding the underlying mechanism leading to the pharmacological profile of the plant extract used in therapy of depression. We will summarize the different concepts described for hyperforin’s antidepressive activity. Starting with unspecific protein-independent mechanisms due to changes in pH, we will summarize data of protein-based concepts beginning with concepts based on involvement of a variety of proteins and will finally present concepts based on the modulation of a single protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott AC, Calderon Toledo C, Aranguiz FC, Inestrosa NC, Varela-Nallar L (2013) Tetrahydrohyperforin increases adult hippocampal neurogenesis in wild-type and APPswe/PS1ΔE9 mice. J Alzheimers Dis 34:873–885

    CAS  PubMed  Google Scholar 

  • Amaral MD, Pozzo-Miller L (2007) TRPC3 channels are necessary for brain-derived neurotrophic factor to activate a nonselective cationic current and to induce dendritic spine formation. J Neurosci 27:5179–5189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barliya T, Mandel M, Livnat T, Weinberger D, Lavie G (2011) Degradation of HIF-1alpha under hypoxia combined with induction of Hsp90 polyubiquitination in cancer cells by hypericin: a unique cancer therapy. PLoS One 6:e22849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bauer S, Störmer E, Johne A, Krüger H, Budde K, Neumayer HH et al (2003) Alterations in cyclosporin A pharmacokinetics and metabolism during treatment with St John’s wort in renal transplant patients. Br J Clin Pharmacol 55:203–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biber A, Fischer H, Römer A, Chatterjee SS (1998) Oral bioavailability of hyperforin from Hypericum extracts in rats and human volunteers. Pharmacopsychiatry 31(Suppl 1):36–43

    Article  CAS  PubMed  Google Scholar 

  • Bladt S, Wagner H (1994) Inhibition of MAO by fractions and constituents of Hypericum extract. J Geriatr Psychiatry Neurol 7(Suppl 1):S57–S59

    Article  PubMed  Google Scholar 

  • Boiy A, Roelandts R, van den Oord J, de Witte PAM (2008) Photosensitizing activity of hypericin and hypericin acetate after topical application on normal mouse skin. Br J Dermatol 158:360–369

    Article  CAS  PubMed  Google Scholar 

  • Bouron A, Oberwinkler J (2014) Contribution of calcium-conducting channels to the transport of zinc ions. Pflugers Arch 466:381–387

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach T, Hoffmann MW, Becker T, Schlitt H, Klempnauer J (2000a) Drug interaction of St John’s wort with cyclosporin. Lancet 355:1912

    Article  CAS  PubMed  Google Scholar 

  • Breidenbach T, Kliem V, Burg M, Radermacher J, Hoffmann MW, Klempnauer J (2000b) Profound drop of cyclosporin A whole blood trough levels caused by St. John’s wort (Hypericum perforatum). Transplantation 69:2229–2230

    Article  CAS  PubMed  Google Scholar 

  • Brenn A, Grube M, Jedlitschky G, Fischer A, Strohmeier B, Eiden M et al (2014) St. John’s Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer’s disease mouse model-role of P-glycoprotein. Brain Pathol 24:18–24

    Article  PubMed  Google Scholar 

  • Brockmöller J, Reum T, Bauer S, Kerb R, Hübner WD, Roots I (1997) Hypericin and pseudohypericin: pharmacokinetics and effects on photosensitivity in humans. Pharmacopsychiatry 30(Suppl 2):94–101

    Article  PubMed  Google Scholar 

  • Buchholzer ML, Dvorak C, Chatterjee SS, Klein J (2002) Dual modulation of striatal acetylcholine release by hyperforin, a constituent of St. John’s wort. J Pharmacol Exp Ther 301:714–719

    Article  CAS  PubMed  Google Scholar 

  • Butterweck V, Schmidt M (2007) St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 157:356–361

    Article  PubMed  Google Scholar 

  • Butterweck V, Böckers T, Korte B, Wittkowski W, Winterhoff H (2002) Long-term effects of St. John’s wort and hypericin on monoamine levels in rat hypothalamus and hippocampus. Brain Res 930:21–29

    Article  CAS  PubMed  Google Scholar 

  • Caccia S, Gobbi M (2009) St. John’s wort components and the brain: uptake, concentrations reached and the mechanisms underlying pharmacological effects. Curr Drug Metab 10:1055–1065

    Article  CAS  PubMed  Google Scholar 

  • Cantoni L, Rozio M, Mangolini A, Hauri L, Caccia S (2003) Hyperforin contributes to the hepatic CYP3A-inducing effect of Hypericum perforatum extract in the mouse. Toxicol Sci 75:25–30

    Article  CAS  PubMed  Google Scholar 

  • Carvajal FJ, Inestrosa NC (2011) Interactions of AChE with Aβ aggregates in Alzheimer’s brain: therapeutic relevance of IDN 5706. Front Mol Neurosci 4:19

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carvajal FJ, Zolezzi JM, Tapia-Rojas C, Godoy JA, Inestrosa NC (2013) Tetrahydrohyperforin decreases cholinergic markers associated with amyloid-β plaques, 4-hydroxynonenal formation, and caspase-3 activation in AβPP/PS1 mice. J Alzheimers Dis 36:99–118

    CAS  PubMed  Google Scholar 

  • Cerpa W, Hancke JL, Morazzoni P, Bombardelli E, Riva A, Marin PP et al (2010) The hyperforin derivative IDN5706 occludes spatial memory impairments and neuropathological changes in a double transgenic Alzheimer’s mouse model. Curr Alzheimer Res 7:126–133

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SS, Nöldner M, Koch E, Erdelmeier C (1998) Antidepressant activity of Hypericum perforatum and hyperforin: the neglected possibility. Pharmacopsychiatry 31(Suppl 1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee S, Filippov V, Lishko P, Maximyuk O, Nöldner M, Krishtal O (1999) Hyperforin attenuates various ionic conductance mechanisms in the isolated hippocampal neurons of rat. Life Sci 65:2395–2405

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SS, Biber A, Weibezahn C (2001) Stimulation of glutamate, aspartate and gamma-aminobutyric acid release from synaptosomes by hyperforin. Pharmacopsychiatry 34(Suppl 1):S11–S19

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Oberwinkler H, Werner F, Gaßner B, Nakagawa H, Feil R et al (2013) Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels. Arterioscler Thromb Vasc Biol 33:2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Sun Ahn H, Kim D, Hoon Shin D, Su Kim S, Yong Kim K et al (2006) Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res 1085:132–137

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE, Runnels LW, Strübing C (2001) The TRP ion channel family. Nat Rev Neurosci 2:387–396

    Article  CAS  PubMed  Google Scholar 

  • Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 101:10726–10731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cott JM (1997) In vitro receptor binding and enzyme inhibition by Hypericum perforatum extract. Pharmacopsychiatry 30(Suppl 2):108–112

    Article  CAS  PubMed  Google Scholar 

  • Davids LM, Kleemann B, Kacerovská D, Pizinger K, Kidson SH (2008) Hypericin phototoxicity induces different modes of cell death in melanoma and human skin cells. J Photochem Photobiol B 91:67–76

    Article  CAS  PubMed  Google Scholar 

  • Dinamarca MC, Cerpa W, Garrido J, Hancke JL, Inestrosa NC (2006) Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer’s amyloid-beta-deposits. Mol Psychiatry 11:1032–1048

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Winters A, Ding M, Graham S, Akopova I, Muallem S et al (2011) Reactive oxygen species-mediated TRPC6 protein activation in vascular myocytes, a mechanism for vasoconstrictor-regulated vascular tone. J Biol Chem 286:31799–31809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dror N, Mandel M, Lavie G (2013) Unique anti-glioblastoma activities of hypericin are at the crossroad of biochemical and epigenetic events and culminate in tumor cell differentiation. PLoS One 8:e73625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y (2010) Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 120:3480–3492

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duman RS, Aghajanian GK (2012) Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duman CH, Duman RS (2015) Spine synapse remodeling in the pathophysiology and treatment of depression. Neurosci Lett 601:20–29

    Article  CAS  PubMed  Google Scholar 

  • Duric V, Duman RS (2013) Depression and treatment response: dynamic interplay of signaling pathways and altered neural processes. Cell Mol Life Sci 70:39–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst E (1999) Second thoughts about safety of St John’s wort. Lancet 354:2014–2016

    Article  CAS  PubMed  Google Scholar 

  • Faber ESL, Sedlak P, Vidovic M, Sah P (2006) Synaptic activation of transient receptor potential channels by metabotropic glutamate receptors in the lateral amygdala. Neuroscience 137:781–794

    Article  CAS  PubMed  Google Scholar 

  • Fisunov A, Lozovaya N, Tsintsadze T, Chatterjee SS, Nöldner M, Krishtal O (2000) Hyperforin modulates gating of P-type Ca2+ current in cerebellar Purkinje neurons. Pflugers Arch 440:427–434

    Article  CAS  PubMed  Google Scholar 

  • Flockerzi V (2007) An introduction on TRP channels. Handb Exp Pharmacol (179):1–19

    Google Scholar 

  • Fortin DA, Srivastava T, Dwarakanath D, Pierre P, Nygaard S, Derkach VA et al (2012) Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J Neurosci 32:8127–8137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Froestl B, Steiner B, Müller WE (2003) Enhancement of proteolytic processing of the beta-amyloid precursor protein by hyperforin. Biochem Pharmacol 66:2177–2184

    Article  CAS  PubMed  Google Scholar 

  • Fusco FR, Martorana A, Giampà C, De March Z, Vacca F, Tozzi A et al (2004) Cellular localization of TRPC3 channel in rat brain: preferential distribution to oligodendrocytes. Neurosci Lett 365:137–142

    Article  CAS  PubMed  Google Scholar 

  • Gartner M, Müller T, Simon JC, Giannis A, Sleeman JP (2005) Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent. Chembiochem 6:171–177

    Article  CAS  PubMed  Google Scholar 

  • Gastpar M (2013) Hypericum extract WS ® 5570 for depression--an overview. Int J Psychiatry Clin Pract 17(Suppl 1):1–7

    Article  PubMed  Google Scholar 

  • Gastpar M, Singer A, Zeller K (2006) Comparative efficacy and safety of a once-daily dosage of Hypericum extract STW3-VI and citalopram in patients with moderate depression: a double-blind, randomised, multicentre, placebo-controlled study. Pharmacopsychiatry 39:66–75

    Article  CAS  PubMed  Google Scholar 

  • Gibon J, Tu P, Bouron A (2010) Store-depletion and hyperforin activate distinct types of Ca2+-conducting channels in cortical neurons. Cell Calcium 47:538–543

    Article  CAS  PubMed  Google Scholar 

  • Gibon J, Richaud P, Bouron A (2011a) Hyperforin changes the zinc-storage capacities of brain cells. Neuropharmacology 61:1321–1326

    Article  CAS  PubMed  Google Scholar 

  • Gibon J, Tu P, Bohic S, Richaud P, Arnaud J, Zhu M et al (2011b) The over-expression of TRPC6 channels in HEK-293 cells favours the intracellular accumulation of zinc. Biochim Biophys Acta Biomembr 1808:2807–2818

    Article  CAS  Google Scholar 

  • Gibon J, Deloulme JC, Chevallier T, Ladevèze E, Abrous DN, Bouron A (2012) The antidepressant hyperforin increases the phosphorylation of CREB and the expression of TrkB in a tissue-specific manner. Int J Neuropsychopharmacol 16(1):189–198

    Article  PubMed  CAS  Google Scholar 

  • Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X et al (2014) Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. doi:10.1038/mp.2014.141

    PubMed  Google Scholar 

  • Griffith TN, Varela-Nallar L, Dinamarca MC, Inestrosa NC (2010) Neurobiological effects of Hyperforin and its potential in Alzheimer’s disease therapy. Curr Med Chem 17:391–406

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C, Gollasch M (2011) Pharmacological modulation of diacylglycerol-sensitive TRPC3/6/7 channels. Curr Pharm Biotechnol 12:35–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harteneck C, Leuner K (2014) TRP channels in neuronal and glial signal transduction. In: Heinbockel T (ed) Neurochemistry. InTech, Rijeka. doi:10.5772/58232. ISBN: 978-953-51-1237-2

    Google Scholar 

  • Harteneck C, Plant TD, Schultz G (2000) From worm to man: three subfamilies of TRP channels. Trends Neurosci 23:159–166

    Article  CAS  PubMed  Google Scholar 

  • Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25:61–75

    Article  CAS  PubMed  Google Scholar 

  • Heiser JH, Schuwald AM, Sillani G, Ye L, Müller WE, Leuner K (2013) TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling. J Neurochem 127:303–313

    Article  CAS  PubMed  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  CAS  PubMed  Google Scholar 

  • Inestrosa NC, Tapia-Rojas C, Griffith TN, Carvajal FJ, Benito MJ, Rivera-Dictter A et al (2011) Tetrahydrohyperforin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer’s disease: a possible effect on APP processing. Transl Psychiatry 1:e20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isacchi B, Bergonzi MC, Carnevali F, van der Esch SA, Vincieri FF, Bilia AR (2007) Analysis and stability of the constituents of St. John’s wort oils prepared with different methods. J Pharm Biomed Anal 45:756–761

    Article  CAS  PubMed  Google Scholar 

  • Jensen AA, Fahlke C, Bjørn-Yoshimoto WE, Bunch L (2015) Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 20:116–123

    Article  CAS  PubMed  Google Scholar 

  • Kaehler ST, Sinner C, Chatterjee SS, Philippu A (1999) Hyperforin enhances the extracellular concentrations of catecholamines, serotonin and glutamate in the rat locus coeruleus. Neurosci Lett 262:199–202

    Article  CAS  PubMed  Google Scholar 

  • Kandel BA, Ekins S, Leuner K, Thasler WE, Harteneck C, Zanger UM (2014) No activation of human pregnane X receptor by hyperforin-related phloroglucinols. J Pharmacol Exp Ther 348:393–400

    Article  PubMed  CAS  Google Scholar 

  • Kasper S, Caraci F, Forti B, Drago F, Aguglia E (2010) Efficacy and tolerability of Hypericum extract for the treatment of mild to moderate depression. Eur Neuropsychopharmacol 20:747–765

    Article  CAS  PubMed  Google Scholar 

  • Keller JH, Karas M, Müller WE, Volmer DA, Eckert GP, Tawab MA et al (2003) Determination of hyperforin in mouse brain by high-performance liquid chromatography/tandem mass spectrometry. Anal Chem 75:6084–6088

    Article  CAS  PubMed  Google Scholar 

  • Kerb R, Brockmöller J, Staffeldt B, Ploch M, Roots I (1996) Single-dose and steady-state pharmacokinetics of hypericin and pseudohypericin. Antimicrob Agents Chemother 40:2087–2093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiewert C, Buchholzer ML, Hartmann J, Chatterjee SS, Klein J (2004) Stimulation of hippocampal acetylcholine release by hyperforin, a constituent of St. John’s wort. Neurosci Lett 364:195–198

    Article  CAS  PubMed  Google Scholar 

  • Kim DS, Ryu HJ, Kim JE, Kang TC (2013) The reverse roles of transient receptor potential canonical channel-3 and −6 in neuronal death following pilocarpine-induced status epilepticus. Cell Mol Neurobiol 33:99–109

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O, Lozovaya N, Fisunov A, Tsintsadze T, Pankratov Y, Kopanitsa M et al (2001) Modulation of ion channels in rat neurons by the constituents of Hypericum perforatum. Pharmacopsychiatry 34(Suppl 1):S74–S82

    Article  CAS  PubMed  Google Scholar 

  • Laakmann G, Schüle C, Baghai T, Kieser M (1998) St. John’s wort in mild to moderate depression: the relevance of hyperforin for the clinical efficacy. Pharmacopsychiatry 31(Suppl 1):54–59

    Article  CAS  PubMed  Google Scholar 

  • Lecrubier Y, Clerc G, Didi R, Kieser M (2002) Efficacy of St. John’s wort extract WS 5570 in major depression: a double-blind, placebo-controlled trial. Am J Psychiatry 159:1361–1366

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Duke RK, Tran VH, Hook JM, Duke CC (2006) Hyperforin and its analogues inhibit CYP3A4 enzyme activity. Phytochemistry 67:2550–2560

    Article  CAS  PubMed  Google Scholar 

  • Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G (2005) The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 17:437–445

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Kazanski V, Müller M, Essin K, Henke B, Gollasch M et al (2007) Hyperforin--a key constituent of St. John’s wort specifically activates TRPC6 channels. FASEB J 21:4101–4111

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R et al (2010) Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators--identification of a novel pharmacophore. Mol Pharmacol 77:368–377

    Article  CAS  PubMed  Google Scholar 

  • Leuner K, Li W, Amaral MD, Rudolph S, Calfa G, Schuwald AM et al (2013) Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca2+-permeable TRPC6 channels. Hippocampus 23:40–52

    Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ et al (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  CAS  PubMed  Google Scholar 

  • Li W, Calfa G, Larimore J, Pozzo-Miller L (2012) Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A 109:17087–17092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Y (2013) Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways. Mol Med Rep 8:543–550

    PubMed  Google Scholar 

  • Lin Y, Zhang JC, Fu J, Chen F, Wang J, Wu ZL et al (2013) Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. J Cereb Blood Flow Metab 33:253–262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. doi:10.1038/nrd4626

    PubMed  PubMed Central  Google Scholar 

  • Linde K, Berner MM, Kriston L (2008) St John’s wort for major depression. Cochrane Database Syst Rev CD000448

    Google Scholar 

  • Mai I, Störmer E, Bauer S, Krüger H, Budde K, Roots I (2003) Impact of St John’s wort treatment on the pharmacokinetics of tacrolimus and mycophenolic acid in renal transplant patients. Nephrol Dial Transplant 18:819–822

    Article  CAS  PubMed  Google Scholar 

  • Maisenbacher P, Kovar KA (1992) Analysis and stability of Hyperici oleum. Planta Med 58:351–354

    Article  CAS  PubMed  Google Scholar 

  • Marsh WL, Davies JA (2002) The involvement of sodium and calcium ions in the release of amino acid neurotransmitters from mouse cortical slices elicited by hyperforin. Life Sci 71:2645–2655

    Article  CAS  PubMed  Google Scholar 

  • McGurk JS, Shim S, Kim JY, Wen Z, Song H, Ming GL (2011) Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction. J Neurosci 31:14754–14762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKinnon MC, Yucel K, Nazarov A, MacQueen GM (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 34:41–54

    PubMed Central  PubMed  Google Scholar 

  • Montecinos-Oliva C, Schüller A, Parodi J, Melo F, Inestrosa NC (2014) Effects of tetrahydrohyperforin in mouse hippocampal slices: neuroprotection, long-term potentiation and TRPC channels. Curr Med Chem 21:3494–3506

    Article  CAS  PubMed  Google Scholar 

  • Montecinos-Oliva C, Schüller A, Inestrosa NC (2015) Tetrahydrohyperforin: a neuroprotective modified natural compound against Alzheimer’s disease. Neural Regen Res 10:552–554

    Article  PubMed Central  PubMed  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108:595–598

    Article  CAS  PubMed  Google Scholar 

  • Moore LB, Goodwin B, Jones SA, Wisely GB, Serabjit-Singh CJ, Willson TM et al (2000) St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc Natl Acad Sci U S A 97:7500–7502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller WE (2003) Current St. John’s wort research from mode of action to clinical efficacy. Pharmacol Res 47:101–109

    Article  PubMed  Google Scholar 

  • Müller M, Essin K, Hill K, Beschmann H, Rubant S, Schempp CM et al (2008) Specific TRPC6 channel activation, a novel approach to stimulate keratinocyte differentiation. J Biol Chem 283:33942–33954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muñoz RF, Cuijpers P, Smit F, Barrera AZ, Leykin Y (2010) Prevention of major depression. Annu Rev Clin Psychol 6:181–212

    Article  PubMed  Google Scholar 

  • Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD, Michaud C et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223

    Article  PubMed  Google Scholar 

  • Nilius B (2012) Transient receptor potential (TRP) channels in the brain: the good and the ugly. Eur Rev 20:343–355

    Article  Google Scholar 

  • Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66:676–814

    Article  PubMed  CAS  Google Scholar 

  • Nilius B, Szallasi A (2015) Are brain TRPs viable targets for curing neurodegenerative disorders and improving mental health? In: Szallasi A (ed) TRP channels as therapeutic targets. From basic science to clinical use. Academic, San Diego, pp 419–456

    Google Scholar 

  • Nöldner M, Schötz K (2002) Rutin is essential for the antidepressant activity of Hypericum perforatum extracts in the forced swimming test. Planta Med 68:577–580

    Article  PubMed  Google Scholar 

  • Novelli M, Beffy P, Menegazzi M, De Tata V, Martino L, Sgarbossa A et al (2014) St. John’s wort extract and hyperforin protect rat and human pancreatic islets against cytokine toxicity. Acta Diabetol 51:113–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Obach RS (2000) Inhibition of human cytochrome P450 enzymes by constituents of St. John’s wort, an herbal preparation used in the treatment of depression. J Pharmacol Exp Ther 294:88–95

    CAS  PubMed  Google Scholar 

  • Paulke A, Nöldner M, Schubert-Zsilavecz M, Wurglics M (2008) St. John’s wort flavonoids and their metabolites show antidepressant activity and accumulate in brain after multiple oral doses. Pharmazie 63:296–302

    CAS  PubMed  Google Scholar 

  • Penninx BWJH, Milaneschi Y, Lamers F, Vogelzangs N (2013) Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med 11:129

    Article  PubMed Central  PubMed  Google Scholar 

  • Philippu A (2001) In vivo neurotransmitter release in the locus coeruleus--effects of hyperforin, inescapable shock and fear. Pharmacopsychiatry 34(Suppl 1):S111–S115

    Article  CAS  PubMed  Google Scholar 

  • Rothley M, Schmid A, Thiele W, Schacht V, Plaumann D, Gartner M et al (2009) Hyperforin and aristoforin inhibit lymphatic endothelial cell proliferation in vitro and suppress tumor-induced lymphangiogenesis in vivo. Int J Cancer 125:34–42

    Article  CAS  PubMed  Google Scholar 

  • Roz N, Rehavi M (2003) Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane. Life Sci 73:461–470

    Article  CAS  PubMed  Google Scholar 

  • Roz N, Rehavi M (2004) Hyperforin depletes synaptic vesicles content and induces compartmental redistribution of nerve ending monoamines. Life Sci 75:2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Roz N, Mazur Y, Hirshfeld A, Rehavi M (2002) Inhibition of vesicular uptake of monoamines by hyperforin. Life Sci 71:2227–2237

    Article  CAS  PubMed  Google Scholar 

  • Samapati R, Yang Y, Yin J, Stoerger C, Arenz C, Dietrich A et al (2012) Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6. Am J Respir Crit Care Med 185:160–170

    Article  CAS  PubMed  Google Scholar 

  • Scimemi A (2014) Structure, function, and plasticity of GABA transporters. Front Cell Neurosci 8:161

    PubMed Central  PubMed  Google Scholar 

  • Sell TS, Belkacemi T, Flockerzi V, Beck A (2014) Protonophore properties of hyperforin are essential for its pharmacological activity. Sci Rep 4:7500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Šemeláková M, Mikeš J, Jendželovský R, Fedoročko P (2012) The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells. J Photochem Photobiol B 117:115–125

    Article  PubMed  CAS  Google Scholar 

  • Singer A, Wonnemann M, Müller WE (1999) Hyperforin, a major antidepressant constituent of St. John’s Wort, inhibits serotonin uptake by elevating free intracellular Na+. J Pharmacol Exp Ther 290:1363–1368

    CAS  PubMed  Google Scholar 

  • Singer A, Schmidt M, Hauke W, Stade K (2011) Duration of response after treatment of mild to moderate depression with Hypericum extract STW 3-VI, citalopram and placebo: a reanalysis of data from a controlled clinical trial. Phytomedicine 18:739–742

    Article  CAS  PubMed  Google Scholar 

  • Sossin WS, Barker PA (2007) Something old, something new: BDNF-induced neuron survival requires TRPC channel function. Nat Neurosci 10:537–538

    Article  CAS  PubMed  Google Scholar 

  • Staffeldt B, Kerb R, Brockmöller J, Ploch M, Roots I (1994) Pharmacokinetics of hypericin and pseudohypericin after oral intake of the Hypericum perforatum extract LI 160 in healthy volunteers. J Geriatr Psychiatry Neurol 7(Suppl 1):S47–S53

    Article  PubMed  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29:645–655

    Article  PubMed  Google Scholar 

  • Suzuki O, Katsumata Y, Oya M, Bladt S, Wagner H (1984) Inhibition of monoamine oxidase by hypericin. Planta Med 50:272–274

    Article  CAS  PubMed  Google Scholar 

  • Thiede HM, Walper A (1994) Inhibition of MAO and COMT by Hypericum extracts and hypericin. J Geriatr Psychiatry Neurol 7(Suppl 1):S54–S56

    Article  PubMed  Google Scholar 

  • Travis S, Coupland NJ, Silversone PH, Huang Y, Fujiwara E, Carter R et al (2014) Dentate gyrus volume and memory performance in major depressive disorder. J Affect Disord 172C:159–164

    PubMed  Google Scholar 

  • Treiber K, Singer A, Henke B, Müller WE (2005) Hyperforin activates nonselective cation channels (NSCCs). Br J Pharmacol 145:75–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tu P, Kunert-Keil C, Lucke S, Brinkmeier H, Bouron A (2009) Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons. J Neurochem 108:126–138

    Article  CAS  PubMed  Google Scholar 

  • Tu P, Gibon J, Bouron A (2010) The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria. J Neurochem 112:204–213

    Article  CAS  PubMed  Google Scholar 

  • Vance KM, Ribnicky DM, Hermann GE, Rogers RC (2014) St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract. Nutrition 30:S37–S42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vennekens R, Menigoz A, Nilius B (2012) TRPs in the brain. Rev Physiol Biochem Pharmacol 163:27–64

    PubMed  Google Scholar 

  • Verotta L, Appendino G, Belloro E, Jakupovic J, Bombardelli E (1999) Furohyperforin, a prenylated phloroglucinol from St. John’s wort (Hypericum perforatum). J Nat Prod 62:770–772

    Article  CAS  PubMed  Google Scholar 

  • Verotta L, Lovaglio E, Sterner O, Appendino G, Bombardelli E (2004) Modulation of chemoselectivity by protein additives. Remarkable effects in the oxidation of hyperforin. J Org Chem 69:7869–7874

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen Und Halbach O, Hinz U, Unsicker K, Egorov AV (2005) Distribution of TRPC1 and TRPC5 in medial temporal lobe structures of mice. Cell Tissue Res 322:201–206

    Article  CAS  Google Scholar 

  • Watkins RE, Maglich JM, Moore LB, Wisely GB, Noble SM, Davis-Searles PR et al (2003) 1 Å crystal structure of human PXR in complex with the St. John’s wort. Biochemistry 42:1430–1438

    Article  CAS  PubMed  Google Scholar 

  • Wentworth JM, Agostini M, Love J, Schwabe JW, Chatterjee VK (2000) St John’s wort, a herbal antidepressant, activates the steroid X receptor. J Endocrinol 166:R11–R16

    Article  CAS  PubMed  Google Scholar 

  • Whitten DL, Myers SP, Hawrelak JA, Wohlmuth H (2006) The effect of St John’s wort extracts on CYP3A: a systematic review of prospective clinical trials. Br J Clin Pharmacol 62:512–526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfender JL, Verotta L, Belvisi L, Fuzzati N, Hostettmann K (2003) Structural investigations isomeric oxidised forms of hyperforin by HPLC-NMR and HPLC-MSn. Phytochem Anal 14:290–297

    Article  CAS  PubMed  Google Scholar 

  • Wonnemann M, Singer A, Müller WE (2000) Inhibition of synaptosomal uptake of 3H-L-glutamate and 3H-GABA by hyperforin, a major constituent of St. John’s wort: the role of amiloride sensitive sodium conductive pathways. Neuropsychopharmacology 23:188–197

    Article  CAS  PubMed  Google Scholar 

  • Wu LJ, Sweet TB, Clapham DE (2010) International union of basic and clinical pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 62:381–404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshitake T, Iizuka R, Yoshitake S, Weikop P, Müller WE, Ogren SO et al (2004) Hypericum perforatum L (St. John’s wort) preferentially increases extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 142:414–418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zanoli P, Rivasi M, Baraldi C, Baraldi M (2002) Pharmacological activity of hyperforin acetate in rats. Behav Pharmacol 13:645–651

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Lim LY, Chowbay B (2004) Herbal modulation of P-glycoprotein. Drug Metab Rev 36:57–104

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristina Friedland or Christian Harteneck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Friedland, K., Harteneck, C. (2015). Hyperforin: To Be or Not to Be an Activator of TRPC(6). In: Nilius, B., Gudermann, T., Jahn, R., Lill, R., Petersen, O., de Tombe, P. (eds) Reviews of Physiology, Biochemistry and Pharmacology Vol. 169. Reviews of Physiology, Biochemistry and Pharmacology, vol 169. Springer, Cham. https://doi.org/10.1007/112_2015_25

Download citation

Publish with us

Policies and ethics