Skip to main content

Nanotechnology in Plants

  • Chapter
  • First Online:
Plant Genetics and Molecular Biology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 164))

Abstract

The integration of nanotechnology in medicine has had a tremendous impact in the past few decades. The discovery of synthesis of nanomaterials (NMs) and their functions as versatile tools promoted various applications in nano-biotechnology and nanomedicine. Although the physical and chemical methods are still considered as commonly used methods, they introduce several drawbacks such as the use of toxic chemicals (solvent, reducing, and capping agents) and poor control of size, size distribution, and morphology, respectively. Additionally, the NMs synthesized in organic solvents and hydrophobic surfactants rapidly aggregate in aqueous solutions or under physiologic conditions, limiting their applications in medicine. Many of the phase-transfer strategies were developed and applied for the transfer of NMs into aqueous solutions. Although great efforts have been put into phase transfers, they mostly include expensive, time-consuming, intensive labor work, multi steps, and complicated procedures.

Use of plant extracts in the biological synthesis method offers stark advantages over other biomolecules (protein, enzyme, peptide, and DNA). Plant extracts have been commonly used for food, medicine, NM synthesis, and biosensing. There are many viable techniques developed for the production of plant extracts with various contents based on their simplicity, cost, and the type of extract content. In this chapter, we conduct a comparative study for extract preparation techniques, the use of extracts for metallic single and hybrid nanoparticle (NP) synthesis, and their antimicrobial properties against pathogenic and plant-based bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostruct 4:557–563

    Google Scholar 

  2. Gupta A, Naraniwal M, Kothari V (2012) Modern extraction methods for preparation of bioactive plant extracts. IJANS 1:8–26

    Google Scholar 

  3. Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30

    Article  CAS  PubMed  Google Scholar 

  4. Chen S, Sun Y, Chao J, Cheng L, Chen Y, Liu J (2011) Dispersive liquid–liquid microextraction of silver nanoparticles in water using ionic liquid 1-octyl-3 methylimidazolium hexafluorophosphate. J Environ Sci 41:211–217

    Article  Google Scholar 

  5. Nerome H, Machmudah S, Fukuzato R, Higashiura T, Kanda H, Goto M (2016) Effect of solvent on nanoparticle production of β-carotene by a supercritical anti-solvent process. Chem Eng Technol 39:1771–1777

    Article  CAS  Google Scholar 

  6. Surendra TV, Roopan SM, Arasu MV, Al-Dhabi NA, Rayalu GM (2016) RSM optimized Moringa oleifera peel extract for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property. J Photochem Photobiol B 162:550–557

    Article  CAS  PubMed  Google Scholar 

  7. Sharma D, Sabela MI, Kanchi S, Mdluli PS, Singh G, Stenström TA, Bisetty K (2016) Biosynthesis of ZnO nanoparticles using Jacaranda mimosifolia flowers extract: synergistic antibacterial activity and molecular simulated facet specific adsorption studies. J Photochem Photobiol B 162:199–207

    Article  CAS  PubMed  Google Scholar 

  8. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  PubMed  Google Scholar 

  9. Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Omar AKM (2013) Techniques for extraction of bioactive compounds from plant materials: a review. J Food Eng 117:426–436

    Article  CAS  Google Scholar 

  10. Kurepa J, Nakabayashi R, Paunesku T, Suzuki M, Saito K, Woloschak GE, Smalle JA (2014) Direct isolation of flavonoids from plants using ultra-small anatase TiO2 nanoparticles. Plant J 77:443–453

    Article  CAS  PubMed  Google Scholar 

  11. Ma X, Zhao Y, Liang X-J (2011) Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 44:1114–1122

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Yang R, Yang L, Tan W (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu R, Zhang X-B, Kong R-M, Zhao X-H, Jiang J, Tan W (2011) Nucleic acid-functionalized nanomaterials for bioimaging applications. J Mater Chem 21:16323–16334

    Article  CAS  Google Scholar 

  14. Shrivas K, Wu H-F (2010) Multifunctional nanoparticles composite for MALDI-MS: Cd2s-doped carbon nanotubes with CdS nanoparticles as the matrix, preconcentrating and accelerating probes of microwave enzymatic digestion of peptides and proteins for direct MALDI-MS analysis. J Mass Spectrom 45:1452–1460

    Article  CAS  PubMed  Google Scholar 

  15. Murray C-B, Norris D-J, Bawendi M-G (1993) Synthesis and characterization of nearly monodisperse CdE (E = Sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  16. Rosenthal S-J, Chang J-C, Kovtun O, McBride J-R, Tomlinson I-D (2011) Biocompatible quantum dots for biological applications. Chem Biol 18:10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  PubMed  Google Scholar 

  18. Villaraza A-J, Bump A, Brechbiel M-W (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110:2921–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974

    Article  CAS  Google Scholar 

  20. Michalet X, Pinaud F-F, Bentolila L-A, Tsay J-M, Doose S, Li J-J, Sundaresan G, Wu A-M, Gambhir S-S, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sperling R-A, Parak W-J (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc Lond Ser A 368:1333–1383

    Article  CAS  Google Scholar 

  22. Lin C-AJ, Sperling R-A, Li J-K, Yang T-Y, Li P-Y, Zanella M, Chang W-H, Parak W-J (2008) Design of an amphiphilic polymer for nanoparticle coating and functionalization. Small 4:334–341

    Article  CAS  PubMed  Google Scholar 

  23. Chen T, Ocsoy I, Yuan Q, Wang R, You M, Zhao Z, Song E, Zhang X, Tan W (2012) One-step facile surface engineering of hydrophobic nanocrystals with designer molecular recognition. J Am Chem Soc 134:13164–13167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ocsoy I, Gulbakan B, Shukoor M-I, Xiong X, Chen T, Powell D-H, Tan W (2013) Aptamer-conjugated multifunctional Nnanoflowers as a platform for targeting, apture, and detection in laser desorption ionization mass spectrometry. ACS Nano 7:417–427

    Article  CAS  PubMed  Google Scholar 

  25. Peng L, You M, Wu C, Han D, Öçsoy I, Chen T, Chen Z, Tan W (2014) Reversible phase transfer of nanoparticles based on photoswitchable host–guest chemistry. ACS Nano 8:2555–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herzer G (1989) Grain structure and magnetism of nanocrystalline ferromagnets. IEEE Trans Magn 25:3327–3329

    Article  CAS  Google Scholar 

  27. Skorvánek I, O’Handley R-C (1995) Fine-particle magnetism in nanocrystalline Fe-CuNb-Si-B at elevated temperatures. J Magn Magn Mater 140–144:467–468

    Article  Google Scholar 

  28. Raveendran P, Fu J, Wallen S-L (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  PubMed  Google Scholar 

  29. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:50–2638

    Article  CAS  Google Scholar 

  30. De La Rica R, Matsui H (2008) Urease as a nanoreactor for growing crystalline ZnO nanoshells at room temperature. Angew Chem Int Ed 47:5415–5417

    Article  CAS  Google Scholar 

  31. Ocsoy I, Gulbakan B, Chen T, Zhu G, Chen Z, Sari M-M, Peng L, Xiong X, Fang X, Tan W (2013) DNA-guided metal-nanoparticle formation on graphene oxide surface. Adv Mater 25:2319–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ocsoy I, Paret M-L, Ocsoy M-A, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  PubMed  Google Scholar 

  33. Li C, Chen T, Ocsoy I, Zhu G, Yasun E, You M, Wu C, Zheng J, Song E, Huang C-Z, Tan W (2014) Gold-coated Fe3O4 nanoroses with five unique functions for cancer ell targeting, imaging and therapy. Adv Funct Mater 24:1772–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Leng Y, Fu L, Ye L, Li B, Xu X, Xing X, He J, Song Y, Leng C, Guo Y, Ji X, Lu Z (2016) Protein-directed synthesis of highly monodispersed, spherical gold nanoparticles and their applications in multidimensional sensing. Sci Rep 6:28900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strayer A-L, Ocsoy I, Tan W, Jones J, Paret M-L (2016) Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 100:1460–1465

    Article  CAS  PubMed  Google Scholar 

  36. Duman F, Ocsoy I, Kup F-O (2016) Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties. Mat Sci Eng C 60:333–338

    Article  CAS  Google Scholar 

  37. Demirbas A, Welt B-A, Ocsoy I (2016) Biosynthesis of red cabbage extract directed Ag NPs and their effect on the loss of antioxidant activity. Mater Lett 179:20–23

    Article  CAS  Google Scholar 

  38. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Asp 444:226–231

    Article  CAS  Google Scholar 

  39. Wei H, Wang Z, Zhang J, House S, Gao Y-G, Yang L, Robinson H, Tan L-H, Xing H, Hou C, Robertson I-M, Zuo J-M, Lu Y (2011) Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nat Nanotechnol 6:93–97

    Article  CAS  PubMed  Google Scholar 

  40. Ma X, Huh J, Park W, Lee L-P, Kwon Y-J, Sim S-J (2016) Gold nanocrystals with DNA-directed morphologies. Nat Commun 7:12873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodríguez-Lorenzo L, De La Rica R, Álvarez-Puebla R-A, Liz-Marzán L-M, Stevens M-M (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607

    Article  CAS  PubMed  Google Scholar 

  42. Tikhomirov G, Hoogland S, Lee P-E, Fischer A, Sargent E-H, Kelley S-O (2011) DNA-based programming of quantum dot valency, self-assembly and luminescence. Nat Nanotechnol 6:485–490

    Article  CAS  PubMed  Google Scholar 

  43. Ma N, Sargent E-H, Kelley S-O (2009) One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals. Nat Nanotechnol 4:121–125

    Article  CAS  PubMed  Google Scholar 

  44. Karatoprak G-Ş, Aydin G, Altinsoy B, Altinkaynak C, Koşar M, Ocsoy I (2017) The effect of pelargonium Endlicherianum fenzl. Root extracts on formation of nanoparticles and their antimicrobial activities. Enzyme Microb Technol 97:21–26

    Article  CAS  Google Scholar 

  45. Katircioğlu Z, Şakalaka H, Ulaşan M, Gören A-C, Yavuz M-S (2014) Facile synthesis of “green” gold nanocrystals using cynarin in an aqueous solution. Appl Surf Sci 318:191–198

    Article  CAS  Google Scholar 

  46. Ocsoy I, Temiz M, Celik C, Altinsoy B, Yilmaz V, Duman F (2017) A green approach for formation of silver nanoparticles on magnetic graphene oxide and highly effective antimicrobial activity and reusability. J Mol Liq 227:147–152

    Article  CAS  Google Scholar 

  47. Mittal A-K, Chisti Y, Banerjee U-C (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356

    Article  CAS  PubMed  Google Scholar 

  48. Akhtar M-S, Panwar J, Yun Y-S (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1:591–602

    Article  CAS  Google Scholar 

  49. Park Y, Hing Y-N, Weyers A, Kim Y-S, Linhardt R-J (2011) Polysaccharide and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    Article  CAS  PubMed  Google Scholar 

  50. Shankar S-S, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482

    Article  CAS  PubMed  Google Scholar 

  51. Jiang H, Manolache S, Wong ACL, Denes FS (2004) Plasmaenhanced deposition of silver nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J Appl Polym Sci 93(3):1411–1422

    Article  CAS  Google Scholar 

  52. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  53. Kim K-J, Sung W, Suh B, Moon S-K, Choi J-S, Kim J, Lee D (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235–242

    Article  CAS  PubMed  Google Scholar 

  54. Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez PJJ (2009) Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res 43:715–723

    Article  CAS  PubMed  Google Scholar 

  55. Elavazhagan T, Arunachalam KD (2011) Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6:1265–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta Part A 78(2):899–904

    Article  CAS  Google Scholar 

  57. Phillip D (2011) Mangifera indica leaf-assisted biosynthesis of welldispersed silver nanoparticles. Spectrochim Acta Part A 78(1):327–331

    Article  CAS  Google Scholar 

  58. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216

    Article  CAS  Google Scholar 

  59. Ahmad N, Sharma S, Alam MK, Singh VN, Shamsi SF, Mehta BR, Fatma A (2010) Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids Surf B Biointerfaces 81(1):81–86

    Article  CAS  PubMed  Google Scholar 

  60. Dubey SP, Lahtinen M, Sillanpaa M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45(7):1065–1071

    Article  CAS  Google Scholar 

  61. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graceum and its size-dependent catalytic activity. Spectrochim Acta Part A 97:1–5

    Article  CAS  Google Scholar 

  62. Liping Q, Tao C, Ismail Ö, Emir Y, Wu C, Guizhi Z, Mingxu Y, Da H, Jianhui J, Ruqin Y, Weihong T (2015) A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano Lett 15:457–463

    Article  CAS  Google Scholar 

  63. Yasun E, Gulbakan B, Ocsoy I, Yuan Q, Shukoor MI, Li C, Tan W (2012) Enrichment and detection of rare proteins with aptamer-conjugated gold nanorods. Anal Chem 84:6008–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shukoor MI, Altman MO, Han D, Bayrac AT, Ocsoy I, Zhu Z, Tan W (2012) Aptamer-nanoparticle assembly for logic-based detection. ACS Appl Mater Interfaces 4:3007–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ocsoy I, Arslan Ocsoy M, Yasun E, Tan W (2013) Nucleic acid-funtionaized nanomaterials. Nano Life 03:1–10

    Article  CAS  Google Scholar 

  66. McLamore ES, Convertino M, Ocsoy I, Vanegas DC, Taguchi M, Rong Y, Gomes C, Chaturvedi P, Claussen JC (2016) Biomimetic fractal nanometals as a transducer layer in electrochemical biosensing. Semiconductor-based sensors. World Scientific Publishing, Singapore, pp 35–67. https://doi.org/10.1142/9789813146730_0002

    Chapter  Google Scholar 

  67. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590

    Article  CAS  Google Scholar 

  68. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kokus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138

    Article  CAS  Google Scholar 

  69. Thayer PL, Stall RE (1962) A survey of xanthomonas vesicatoria resistance to streptomycin. Proc Fla State Hort Soc 75:163–165

    Google Scholar 

  70. Jones JB, Jones JP (1985) The effect of bactericides, tank mixing time and spray schedule on bacterial leaf spot of tomato. Proc Fla State Hort Soc 98:244–247

    CAS  Google Scholar 

  71. Marco GM, Stall RE (1983) Control of bacterial spot of pepper initiated by strains of xanthomonas xampestris Pv. vesicatoria that differ in sensitivity to copper. Plant Dis 67:779–781

    Article  CAS  Google Scholar 

  72. Jones JB, Woltz SS, Jones JP, Portier KL (1991) Population dynamics xanthomonas campestris Pv. vesicatoria on tomato leaflets treated with copper bactericides. Phytopathology 81:714–719

    Article  CAS  Google Scholar 

  73. Obradovic A, Jones JB, Momol MT, Olson SM, Jackson LE, Balogh B, Guven K, Iriarte FB (2005) Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Dis 89:712–716

    Article  CAS  PubMed  Google Scholar 

  74. Huang C-H, Vallad GE, Zhang S, Wen A, Balogh B, Figueiredo JFL, Behlau F, Jones JB, Momol MT, Olson SM (2012) Effect of application frequency and reduced rates of acibenzolar-S-methyl on the field efficacy of induced resistance against bacterial spot on tomato. Plant Dis 96:221–227

    Article  PubMed  Google Scholar 

  75. Neal A (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17:362–371

    Article  CAS  PubMed  Google Scholar 

  76. Yoon K-Y, Hoon Byeon J, Park J-H, Hwang J (2007) Susceptibility sonstants of escherichia coli and bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  77. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323

    Article  CAS  PubMed  Google Scholar 

  78. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and arbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  79. Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  80. Paret LM, Vallad EG, Averett RD, Jones BJ, Olson MS (2013) Photocatalysis: effect of light-activated nanoscale formulations of TiO2 on xanthomonas perforans, and control of bacterial spot of tomato. Phytopathology 103:228–236

    Article  CAS  PubMed  Google Scholar 

  81. Panácek A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizurová N, Sharma VK, Nevěčná T j, Zbořil R (2006) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  PubMed  Google Scholar 

  82. Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275

    Article  CAS  PubMed  Google Scholar 

  83. Xu W-P, Zhang L-C, Li J-P, Lu Y, Li H-H, Ma Y-N, Wang W-D, Yu S-H (2011) Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J Mater Chem 21:4593–4597

    Article  CAS  Google Scholar 

  84. Das MR, Sarma RK, Saikia R, Kale VS, Shelke MV, Sengupta P (2011) Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity. Colloids Surf B Biointerfaces 83:16–22

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ismail Ocsoy or Weihong Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ocsoy, I., Tasdemir, D., Mazicioglu, S., Tan, W. (2018). Nanotechnology in Plants. In: Varshney, R., Pandey, M., Chitikineni, A. (eds) Plant Genetics and Molecular Biology. Advances in Biochemical Engineering/Biotechnology, vol 164. Springer, Cham. https://doi.org/10.1007/10_2017_53

Download citation

Publish with us

Policies and ethics