Skip to main content

Electrochemical Biosensors Using Aptamers for Theranostics

  • Chapter
  • First Online:
Biosensors Based on Aptamers and Enzymes

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 140))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  CAS  Google Scholar 

  2. Picard FJ, Bergeron MG (2002) Rapid molecular theranostics in infectious diseases. Drug Discov Today 7:1092–1101

    Article  CAS  Google Scholar 

  3. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  4. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  5. Cox JC, Ellington AD (2001) Automated selection of anti-protein aptamers. Bioorg Med Chem 9:2525–2531

    Article  CAS  Google Scholar 

  6. Jenison RD, Gill SC, Pardi A, Polisky B (1994) High-resolution molecular discrimination by RNA. Science 263:1425–1429

    Article  CAS  Google Scholar 

  7. Williams BA, Lin L, Lindsay SM, Chaput JC (2009) Evolution of a histone H4–K16 acetyl-specific DNA aptamer. J Am Chem Soc 131:6330–6331

    Article  CAS  Google Scholar 

  8. Sayer NM, Cubin M, Rhie A, Bullock M, Tahiri-Alaoui A, James W (2004) Structural determinants of conformationally selective, prion-binding aptamers. J Biol Chem 279:13102–13109

    Article  CAS  Google Scholar 

  9. Tsukakoshi K, Harada R, Sode K, Ikebukuro K (2012) Screening of DNA aptamer which binds to alpha-synuclein. Biotechnol Lett 32:643–648

    Article  Google Scholar 

  10. Morris KN, Jensen KB, Julin CM, Weil M, Gold L (1998) High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A 95:2902–2907

    Article  CAS  Google Scholar 

  11. Pestourie C, Cerchia L, Gombert K, Aissouni Y, Boulay J, De Franciscis V, Libri D, Tavitian B, Duconge F (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335

    Article  CAS  Google Scholar 

  12. Ye M, Hu J, Peng M, Liu J, Liu H, Zhao X, Tan W (2012) Generating aptamers by Cell-SELEX for applications in molecular medicine. Int J Mol Sci 13:3341–3353

    Article  CAS  Google Scholar 

  13. Noma T, Ikebukuro K, Sode K, Ohkubo T, Sakasegawa Y, Hachiya N, Kaneko K (2006) A screening method for DNA aptamers that bind to a specific, unidentified protein in tissue samples. Biotechnol Lett 28:1377–1381

    Article  CAS  Google Scholar 

  14. Rajendran M, Ellington AD (2003) In vitro selection of molecular beacons. Nucleic Acids Res 31:5700–5713

    Article  CAS  Google Scholar 

  15. Ikebukuro K, Kiyohara C, Sode K (2004) Electrochemical detection of protein using a double aptamer sandwich. Anal Lett 37:2901–2909

    Article  CAS  Google Scholar 

  16. Ikebukuro K, Kiyohara C, Sode K (2005) Novel electrochemical sensor system for protein using the aptamers in sandwich manner. Biosens Bioelectron 20:2168–2172

    Article  CAS  Google Scholar 

  17. Nonaka Y, Abe K, Ikebukuro K (2012) Electrochemical detection of vascular endothelial growth factor with aptamer sandwich. Electrochemistry 80:363–366

    Article  CAS  Google Scholar 

  18. Abe K, Ikebukuro K (2011) Aptamer sensors combined with enzymes for highly sensitive detection. InTech: Rijeka, Croatia

    Google Scholar 

  19. Polsky R, Gill R, Kaganovsky L, Willner I (2006) Nucleic acid-functionalized Pt nanoparticles: Catalytic labels for the amplified electrochemical detection of biomolecules. Anal Chem 78:2268–2271

    Article  CAS  Google Scholar 

  20. Numnuam A, Chumbimuni-Torres KY, Xiang Y, Bash R, Thavarungkul P, Kanatharana P, Pretsch E, Wang J, Bakker E (2008) Aptamer-based potentiometric measurements of proteins using ion-selective microelectrodes. Anal Chem 80:707–712

    Article  CAS  Google Scholar 

  21. Centi S, Tombelli S, Minunni M, Mascini M (2007) Aptamer-based detection of plasma proteins by an electrochemical assay coupled to magnetic beads. Anal Chem 79:1466–1473

    Article  CAS  Google Scholar 

  22. Zhou L, Ou LJ, Chu X, Shen GL, Yu RQ (2007) Aptamer-based rolling circle amplification: a platform for electrochemical detection of protein. Anal Chem 79:7492–7500

    Article  CAS  Google Scholar 

  23. Pinto A, Bermudo Redondo MC, Ozalp VC, O’Sullivan CK (2009) Real-time apta-PCR for 20 000-fold improvement in detection limit. Mol Biosyst 5:548–553

    Article  CAS  Google Scholar 

  24. Xiang Y, Xie M, Bash R, Chen JJ, Wang J (2007) Ultrasensitive label-free aptamer-based electronic detection. Angew Chem Int Ed Engl 46:9054–9056

    Article  CAS  Google Scholar 

  25. Fukasawa M, Yoshida W, Yamazaki H, Sode K, Ikebukuro K (2009) An aptamer-based bound/free separation system for protein detection. Electroanalysis 21:1297–1302

    Article  CAS  Google Scholar 

  26. Abe K, Hasegawa H, Ikebukuro K (2012) Electrochemical detection of vascular endothelial growth factor by an aptamer-based bound/free separation system. Electrochemistry 80:348–352

    Article  CAS  Google Scholar 

  27. Abe K, Ogasawara D, Yoshida W, Sode K, Ikebukuro K (2011) Aptameric sensors based on structural change for diagnosis. Faraday Discuss 149:93–105 (Discussion 137–157)

    Google Scholar 

  28. Ogasawara D, Hachiya NS, Kaneko K, Sode K, Ikebukuro K (2009) Detection system based on the conformational change in an aptamer and its application to simple bound/free separation. Biosens Bioelectron 24:1372–1376

    Article  CAS  Google Scholar 

  29. Xu D, Yu X, Liu Z, He W, Ma Z (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107–5113

    Article  CAS  Google Scholar 

  30. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012) Aptamer-based impedimetric sensor for bacterial typing. Anal Chem 84:8114–8117

    Article  CAS  Google Scholar 

  31. Labib M, Zamay AS, Muharemagic D, Chechik AV, Bell JC, Berezovski MV (2012) Aptamer-based viability impedimetric sensor for viruses. Anal Chem 84:1813–1816

    Article  CAS  Google Scholar 

  32. Rodriguez MC, Kawde AN, Wang J (2005) Aptamer biosensor for label-free impedance spectroscopy detection of proteins based on recognition-induced switching of the surface charge. Chem Commun (Camb), pp 4267–4269

    Google Scholar 

  33. Qi H, Shangguan L, Li C, Li X, Gao Q, Zhang C (2012) Sensitive and antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample. Biosens Bioelectron 39:324–328

    Article  Google Scholar 

  34. Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal Chem 81:739–745

    Article  CAS  Google Scholar 

  35. Wang L, Xu M, Han L, Zhou M, Zhu C, Dong S (2012) Graphene enhanced electron transfer at aptamer modified electrode and its application in biosensing. Anal Chem 84:7301–7307

    Article  CAS  Google Scholar 

  36. Stern E, Wagner R, Sigworth FJ, Breaker R, Fahmy TM, Reed MA (2007) Importance of the Debye screening length on nanowire field effect transistor sensors. Nano Lett 7:3405–3409

    Article  CAS  Google Scholar 

  37. Maehashi K, Katsura T, Kerman K, Takamura Y, Matsumoto K, Tamiya E (2007) Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem 79:782–787

    Article  CAS  Google Scholar 

  38. Li D, Song S, Fan C (2009) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  Google Scholar 

  39. Yamamoto R, Baba T, Kumar PK (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    Article  CAS  Google Scholar 

  40. Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131

    Article  CAS  Google Scholar 

  41. Bang GS, Cho S, Kim BG (2005) A novel electrochemical detection method for aptamer biosensors. Biosens Bioelectron 21:863–870

    Article  CAS  Google Scholar 

  42. Xiao Y, Lubin AA, Heeger AJ, Plaxco KW (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed Engl 44:5456–5459

    Article  CAS  Google Scholar 

  43. Radi AE, Acero Sanchez JL, Baldrich E, O’Sullivan CK (2006) Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. J Am Chem Soc 128:117–124

    Article  CAS  Google Scholar 

  44. Baker BR, Lai RY, Wood MS, Doctor EH, Heeger AJ, Plaxco KW (2006) An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids. J Am Chem Soc 128:3138–3139

    Article  CAS  Google Scholar 

  45. Stojanovic MN, de Prada P, Landry DW (2001) Aptamer-based folding fluorescent sensor for cocaine. J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  46. Lai RY, Plaxco KW, Heeger AJ (2007) Aptamer-based electrochemical detection of picomolar platelet-derived growth factor directly in blood serum. Anal Chem 79:229–233

    Article  CAS  Google Scholar 

  47. Xiao Y, Uzawa T, White RJ, Demartini D, Plaxco KW (2009) On the signaling of electrochemical aptamer-based sensors: collision- and folding-based mechanisms. Electroanalysis 21:1267–1271

    Article  CAS  Google Scholar 

  48. Xiao Y, Piorek BD, Plaxco KW, Heeger AJ (2005) A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement. J Am Chem Soc 127:17990–17991

    Article  CAS  Google Scholar 

  49. Zuo X, Song S, Zhang J, Pan D, Wang L, Fan C (2007) A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP. J Am Chem Soc 129:1042–1043

    Article  CAS  Google Scholar 

  50. Lu Y, Li X, Zhang L, Yu P, Su L, Mao L (2008) Aptamer-based electrochemical sensors with aptamer-complementary DNA oligonucleotides as probe. Anal Chem 80:1883–1890

    Article  CAS  Google Scholar 

  51. Das J, Cederquist KB, Zaragoza AA, Lee PE, Sargent EH, Kelley SO (2012) An ultrasensitive universal detector based on neutralizer displacement. Nat Chem 4:642–648

    Article  CAS  Google Scholar 

  52. Cheng AK, Ge B, Yu HZ (2007) Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem 79:5158–5164

    Article  CAS  Google Scholar 

  53. Lapierre MA, O’Keefe M, Taft BJ, Kelley SO (2003) Electrocatalytic detection of pathogenic DNA sequences and antibiotic resistance markers. Anal Chem 75:6327–6333

    Article  CAS  Google Scholar 

  54. Ferri S, Kojima K, Sode K (2011) Review of glucose oxidases and glucose dehydrogenases: a bird’s eye view of glucose sensing enzymes. J Diabetes Sci Technol 5:1068–1076

    Article  Google Scholar 

  55. Yamaoka H, Sode K (2007) SPCE based glucose sensor employing novel thermostable glucose dehydrogenase, FADGDH: blood glucose measurement with 150 nL sample in one second. J Diabetes Sci Technol 1:28–35

    Article  Google Scholar 

  56. Abe K, Sode K, Ikebukuro K (2010) Constructing an improved pyrroloquinoline quinone glucose dehydrogenase binding aptamer for enzyme labeling, Biotechnol Lett 32:1293–1298

    Google Scholar 

  57. Morita Y, Yoshida W, Savory N, Han SW, Tera M, Nagasawa K, Nakamura C, Sode K, Ikebukuro K (2011) Development of a novel biosensing system based on the structural change of a polymerized guanine-quadruplex DNA nanostructure. Biosens Bioelectron 26:4837–4841

    Article  CAS  Google Scholar 

  58. Osawa Y, Takase M, Sode K, Ikebukuro K (2009) DNA Aptamers that Bind to PQQGDH as an Electrochemical Labeling Tool. Electroanalysis 21:1303–1308

    Article  CAS  Google Scholar 

  59. Tsuya T, Ferri S, Fujikawa M, Yamaoka H, Sode K (2006) Cloning and functional expression of glucose dehydrogenase complex of Burkholderia cepacia in Escherichia coli. J Biotechnol 123:127–136

    Article  CAS  Google Scholar 

  60. Kakehi N, Yamazaki T, Tsugawa W, Sode K (2007) A novel wireless glucose sensor employing direct electron transfer principle based enzyme fuel cell. Biosens Bioelectron 22:2250–2255

    Article  CAS  Google Scholar 

  61. Xiang Y, Lu Y (2011) Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat Chem 3:697–703

    Article  CAS  Google Scholar 

  62. Su J, Xu J, Chen Y, Xiang Y, Yuan R, Chai Y (2012) Personal glucose sensor for point-of-care early cancer diagnosis. Chem Commun (Camb) 48:6909–6911

    Article  CAS  Google Scholar 

  63. Xu J, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y (2012) Sensitive point-of-care monitoring of HIV related DNA sequences with a personal glucometer. Chem Commun (Camb) 48:10733–10735

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazunori Ikebukuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abe, K., Yoshida, W., Ikebukuro, K. (2013). Electrochemical Biosensors Using Aptamers for Theranostics. In: Gu, M., Kim, HS. (eds) Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_226

Download citation

Publish with us

Policies and ethics