Skip to main content

Does the Adult Stroma Contain Stem Cells?

  • Chapter
  • First Online:
Mesenchymal Stem Cells - Basics and Clinical Application I

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 129))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Wilson, A. Trumpp (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93

    Google Scholar 

  2. Buick RN, MacKillop WJ (1981) Measurement of self-renewal in culture of clonogenic cells from human ovarian carcinoma. British J Cancer 44:349

    Google Scholar 

  3. Thomson SP, Meyskens FL Jr (1982) Method for measurement of self-renewal capacity of clonogenic cells from biopsies of metastatic human malignant melanoma. Cancer Res 42:4606

    Google Scholar 

  4. Muraglia A, Cancedda R, Quarto R (2000) Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 113(Pt 7):1161

    Google Scholar 

  5. Verfaillie CM, Pera MF, Lansdorp PM (2002) Stem cells: hype and reality. Hematol Am Soc Hematol Educ Program 1:369

    Google Scholar 

  6. Park IH et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877, 5 Sept 2008

    Google Scholar 

  7. Tang C et al (2011) An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 29:829

    Google Scholar 

  8. Slack JM (2008) Origin of stem cells in organogenesis. Science 322:1498, 5 Dec 2008

    Google Scholar 

  9. Ksiazek K (2009) A comprehensive review on mesenchymal stem cell growth and senescence. Rejuvenation Res 12:105

    Google Scholar 

  10. Boyer LA et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947, 23 Sept 2005

    Google Scholar 

  11. Scotland KB, Chen S, Sylvester R, Gudas LJ (2009) Analysis of Rex1 (zfp42) function in embryonic stem cell differentiation. Dev Dyn Official Publ Am Assoc Anat 238:1863

    Google Scholar 

  12. Zhang J et al (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114

    Google Scholar 

  13. Loh YH et al (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431

    Google Scholar 

  14. X. Chen, V. B. Vega, H. H. Ng, Transcriptional regulatory networks in embryonic stem cells. Cold Spring Harb Symp Quant Biol 73, 203 (2008)

    Article  CAS  Google Scholar 

  15. Wang X, Dai J (2010) Concise review: isoforms of OCT4 contribute to the confusing diversity in stem cell biology. Stem Cells 28:885

    Google Scholar 

  16. Tapia N, Arauzo-Bravo MJ, Ko K, Scholer HR (2011) Concise review: challenging the pluripotency of human testis-derived ESC-like cells. Stem Cells 29:1165

    Google Scholar 

  17. J. K. Henderson et al (2002) Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20:329

    Article  CAS  Google Scholar 

  18. Osafune K et al (2008) Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol 26:313

    Google Scholar 

  19. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861

    Google Scholar 

  20. J. Yu et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917, 21 Dec 2007

    Google Scholar 

  21. Gonzalez F, Boue S, Izpisua Belmonte JC (2011) Methods for making induced pluripotent stem cells: reprogramming a la carte. Nat Rev Genet 12:231

    Google Scholar 

  22. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393

    Google Scholar 

  23. Friedenstein AJ, Latzinik NV, Gorskaya Yu F, Luria EA, Moskvina IL (1992) Bone marrow stromal colony formation requires stimulation by haemopoietic cells. Bone Miner 18:199

    Google Scholar 

  24. A. J. Friedenstein, Precursor cells of mechanocytes. Int Rev Cytol 47, 327 (1976)

    Article  CAS  Google Scholar 

  25. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP (1968) Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230

    Google Scholar 

  26. M. Dominici et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315

    Article  CAS  Google Scholar 

  27. Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18:1417

    Google Scholar 

  28. Hattan N et al (2005) Purified cardiomyocytes from bone marrow mesenchymal stem cells produce stable intracardiac grafts in mice. Cardiovasc Res 65:334, 1 Feb 2005

    Google Scholar 

  29. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res Official Publ Orthop Res Soc 9:641

    Google Scholar 

  30. Caplan AI (1994) The mesengenic process. Clin Plast Surg 21:429

    Google Scholar 

  31. R. Schafer, H. Northoff, Characteristics of mesenchymal stem cells - New stars in regenerative medicine or unrecognized old fellows in autologous regeneration? Transfusion medicine and hemotherapy: offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie 35, 154 (2008)

    Google Scholar 

  32. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 25:2896

    Google Scholar 

  33. Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711, 14 Sept 1999

    Google Scholar 

  34. Pacary E et al (2006) Synergistic effects of CoCl(2) and ROCK inhibition on mesenchymal stem cell differentiation into neuron-like cells. J Cell Sci 119:2667, 1 Jul 2006

    Google Scholar 

  35. Kawada H et al (2004) Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood 104:3581 1 Dec 2004

    Google Scholar 

  36. Shake JG et al (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73:1919

    Google Scholar 

  37. Schafer R, Northoff H (2008) Cardioprotection and cardiac regeneration by mesenchymal stem cells. Panminerva Med 50:31

    Google Scholar 

  38. Siegel G et al (2012) Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev 6:204, 13 Mar 2012

    Google Scholar 

  39. Rose RA et al (2008) Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells 26:2884

    Google Scholar 

  40. Matsuura K et al (2004) Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. J Cell Biol 167:351, 25 Oct 2004

    Google Scholar 

  41. Goncalves MA et al (2006) Human mesenchymal stem cells ectopically expressing full-length dystrophin can complement Duchenne muscular dystrophy myotubes by cell fusion. Hum Mol Genet 15:213, 15 Jan 2006

    Google Scholar 

  42. Schulze M, Belema-Bedada F, Technau A, Braun T (2005) Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev 19:1787, 1 Aug 2005

    Google Scholar 

  43. Acquistapace A et al (2011) Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells 29:812

    Google Scholar 

  44. Russell KC et al (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788

    Google Scholar 

  45. Russell KC et al (2011) Clonal analysis of the proliferation potential of human bone marrow mesenchymal stem cells as a function of potency. Biotechnol Bioengineering 108:2716

    Google Scholar 

  46. Schafer R et al (2011) Expression of blood group genes by mesenchymal stem cells. British J Haematol 153:520

    Google Scholar 

  47. Jones E, McGonagle D (2008) Human bone marrow mesenchymal stem cells in vivo. Rheumatology (Oxford) 47:126

    Google Scholar 

  48. P. Bianco, M. Riminucci, S. Gronthos, P. G. Robey, Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180 (2001)

    Article  CAS  Google Scholar 

  49. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301, 11 Sept 2008

    Google Scholar 

  50. da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287

    Google Scholar 

  51. Tormin A et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117:5067, 12 May 2011

    Google Scholar 

  52. Diaz-Romero J et al (2005) Immunophenotypic analysis of human articular chondrocytes: changes in surface markers associated with cell expansion in monolayer culture. J Cell Physiol 202:731

    Google Scholar 

  53. Churchman SM et al (2012) Native CD271(+) multipotential stromal cells (MSCs) have a transcript profile indicative of multiple fates with prominent osteogenic and Wnt pathway signalling activity. Arthritis Rheum 64(8):2632–2643

    Article  CAS  Google Scholar 

  54. Guo et al KT (2006) A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220

    Google Scholar 

  55. Tang KC et al Down-regulation of MHC II in mesenchymal stem cells at high IFN-gamma can be partly explained by cytoplasmic retention of CIITA. J Immunol 180:1826, 1 Feb 2008

    Google Scholar 

  56. Chan JL et al (2006) Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 107:4817, 15 Jun 2006

    Google Scholar 

  57. Miura M et al (2006) Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation. Stem Cells 24:1095

    Google Scholar 

  58. Roobrouck VD et al (2011) Differentiation potential of human postnatal mesenchymal stem cells, mesoangioblasts, and multipotent adult progenitor cells reflected in their transcriptome and partially influenced by the culture conditions. Stem Cells 29:871

    Google Scholar 

  59. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J (2012) Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev, 9 May 2012

    Google Scholar 

  60. Danielyan L et al (2009) Survival, neuron-like differentiation and functionality of mesenchymal stem cells in neurotoxic environment: the critical role of erythropoietin. Cell Death Differentiation 16:1599

    Google Scholar 

  61. da Silva Meirelles L, Chagastelles PC, Nardi NB (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119:2204, 1 Jun 2006

    Google Scholar 

  62. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294

    Google Scholar 

  63. Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83:783, 27 Mar 2007

    Google Scholar 

  64. Schu S et al (2011) Immunogenicity of allogeneic mesenchymal stem cells. J Cell Molec Medicine 12 Dec 2011

    Google Scholar 

  65. Grinnemo KH et al (2004) Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thoracic Cardiovasc Surg 127:1293

    Google Scholar 

  66. Peister A et al (2004) Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103:1662, 1 Mar 2004

    Google Scholar 

  67. Barzilay R et al (2009) Comparative characterization of bone marrow-derived mesenchymal stromal cells from four different rat strains. Cytotherapy 11:435

    Article  Google Scholar 

  68. Le Blanc K et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371:1579, 10 May 2008

    Google Scholar 

  69. Schafer R et al (2009) Basic research and clinical applications of non-hematopoietic stem cells, 4–5 April 2008, Tubingen, Germany. Cytotherapy 1:11–6, 16 Jan 2009

    Google Scholar 

  70. Smith JR et al (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22:823

    Article  Google Scholar 

  71. Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41, 4 Jul 2002

    Google Scholar 

  72. Serafini M et al (2007) Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells. J Exp Medicine 204:129, 22 Jan 2007

    Google Scholar 

  73. D’Ippolito G et al (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117:2971, 15 Jun 2004

    Google Scholar 

  74. Kucia M et al (2006) A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4 + stem cells identified in adult bone marrow. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K vol. 20, p 857

    Google Scholar 

  75. Kucia M et al (2007) Morphological and molecular characterization of novel population of CXCR4 + SSEA-4 + Oct-4 + very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K vol. 21, p 297

    Google Scholar 

  76. Shin DM et al (2009) Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic-like stem cells. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K, vol. 23, p 2042

    Google Scholar 

  77. Tsai CC, Su PF, Huang YF, Yew TL, Hung SC (2012) Oct4 and nanog directly regulate dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molec cell 47:169, 27 Jul 2012

    Google Scholar 

  78. Ball SG, Shuttleworth A, Kielty CM (2012) Inhibition of platelet-derived growth factor receptor signaling regulates Oct4 and Nanog expression, cell shape, and mesenchymal stem cell potency. Stem Cells 30:548

    Google Scholar 

  79. Delcroix GJ, Curtis KM, Schiller PC, Montero-Menei CN (2010) EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells. Differentiation Res Biological Divers 80:213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäfer, R. (2012). Does the Adult Stroma Contain Stem Cells?. In: Weyand, B., Dominici, M., Hass, R., Jacobs, R., Kasper, C. (eds) Mesenchymal Stem Cells - Basics and Clinical Application I. Advances in Biochemical Engineering/Biotechnology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_160

Download citation

Publish with us

Policies and ethics