Skip to main content

Lipid Bilayer Membrane Arrays: Fabrication and Applications

  • Chapter
  • First Online:
Future Trends in Biotechnology

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 131))

Abstract

The lipid bilayer is one of the most important self-assembled structures in nature. In addition to compartmentalizing the cell, the lipid bilayer maintains many physical and biological characteristics of cell membranes, including lateral fluidity. It provides a wealth of opportunities for the study of membrane properties. Recently there has been an increasing interest in lipid bilayer arrays fabrication and their applications. In this review, the leading methods for creating lipid bilayer arrays are categorized as mechanical methods, pre-patterning substrate, direct UV patterning, direct blotting or stamping, polymer liftoff technique, robotic micro spotting, and microfluidics. The applications of bilayer arrays for cell adhesion and activation, lipid bilayer based 2D electrophoresis, and high-throughput binding assays are also presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TR-PE:

Texas Red 1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine

D-291:

4-(4-(didecylamino) styryl)-N-methylpyridinium iodide (4-di-10-ASP)

NBD-PE:

(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-snglycero-3-phosphoethanolamine, triethylammonium salt)

Egg PC:

Egg phosphatidylcholine

POPC:

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

NBD-PG:

1-Acyl-2-{12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]lauroyl}-sn-glycero-3-[phospho-rac-(1-glycerol)] (ammonium salt)

TR-BSA:

Bovine serum albumin labeled with Texas Red X-SE

Rh-PE:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine-rhodamine B sulfonyl)

DOPC:

1,2-dioleoyl-sn-glycero-3-phosphocholine

Oregon Green-DHPE:

Oregon Green labeled 1,2-dihexadecanoyl-sn-glycero-3- phosphoethanolamine

Marina Blue-DHPE:

Marina Blue labeled 1,2-dihexadecanoyl-sn-glycero-3- phosphoethanolamine

DNP-cap-DPPE:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (ammonium salt)

GPI:

Glycan-phosphatidyl inositol

PG:

Phosphatidylglycerol

PC:

Phosphatidylcholine

PS:

Phosphatidylserine

DPPC:

1,2-dipalmitoyl-sn-glycero-3-phosphocholine

NBD PS:

1,2-dioleoyl-sn-glycero-3-phospho-l-serine-N-(7-nitro-2-1,3-benzoxadiazol-4-yl) (diammonium salt)

FITC:

Fluorescein isothiocyanate

DOTAP:

1,2-dioleoyl-3-trimethylammoniumpropane (chloride salt)

Biotin-cap DOPE:

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (sodium salt)

Tm :

Phase transition temperature

SAM:

Self assembled monolayer

PDMS:

Poly(dimethyl siloxane)

AFM:

Atomic force microscopy

CFM:

Continuous flow microspotter

References

  1. Singer SJ, Nicolson GL (1972) Fluid mosaic model of structure of cell-membranes. Science 175:720–731

    CAS  Google Scholar 

  2. Danelon C, Perez JB, Santschi C, Brugger J, Vogel H (2006) Cell membranes suspended across nanoaperture arrays. Langmuir 22:22–25

    CAS  Google Scholar 

  3. Han XJ, Studer A, Sehr H, Geissbuhler I, Di Berardino M, Winkler FK, Tiefenauer LX (2007) Nanopore arrays for stable and functional free-standing lipid bilayers. Adv Mater 19:4466–4470

    CAS  Google Scholar 

  4. Hirano-Iwata A, Aoto K, Oshima A, Taira T, Yamaguchi RT, Kimura Y, Niwano M (2010) Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness. Langmuir 26:1949–1952

    CAS  Google Scholar 

  5. Romer W, Steinem C (2004) Impedance analysis and single-channel recordings on nano-black lipid membranes based on porous alumina. Biophys J 86:955–965

    Google Scholar 

  6. Im H, Wittenberg NJ, Lesuffleur A, Lindquist N, COh SH, (2010) Membrane protein biosensing with plasmonic nanopore arrays and pore-spanning lipid membranes. Chem Sci 1:688–696

    CAS  Google Scholar 

  7. Mueller P, Rudin DO, Tien HT, Wescott WC (1962) Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194:979–980

    CAS  Google Scholar 

  8. Mueller P, Rudin DO (1968) Action potentials induced in biomolecular lipid membranes. Nature 217:713–719

    CAS  Google Scholar 

  9. Studer A, Han XJ, Winkler FK, Tiefenauer LX (2009) Formation of individual protein channels in lipid bilayers suspended in nanopores. Colloid Surface B 73:325–331

    CAS  Google Scholar 

  10. Han XJ, Pradeep SND, Critchley K, Sheikh K, Bushby RJ, Evans SD (2007) Supported bilayer lipid membrane arrays on photopatterned self-assembled monolavers. Chem Eur J 13:7957–7964

    CAS  Google Scholar 

  11. Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    CAS  Google Scholar 

  12. Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103:2554–2559

    CAS  Google Scholar 

  13. Kam L, Boxer SG (2001) Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. J Biomed Mater Res 55:487–495

    CAS  Google Scholar 

  14. Sackmann E, Tanaka M (2000) Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64

    CAS  Google Scholar 

  15. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    CAS  Google Scholar 

  16. Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653

    CAS  Google Scholar 

  17. van Oudenaarden A, Boxer SG (1999) Brownian ratchets: molecular separations in lipid bilayers supported on patterned arrays. Science 285:1046–1048

    Google Scholar 

  18. Groves JT, Boxer SG (1995) Electric field-induced concentration gradients in planar supported bilayers. Biophys J 69:1972–1975

    CAS  Google Scholar 

  19. Bayerl TM, Bloom M (1990) Physical-properties of single phospholipid-bilayers adsorbed to micro glass-beads—A new vesicular model system studied by H-2-nuclear magnetic-resonance. Biophys J 58:357–362

    CAS  Google Scholar 

  20. Cremer PS, Groves JT, Kung LA, Boxer SG (1999) Writing and erasing barriers to lateral mobility into fluid phospholipid bilayers. Langmuir 15:3893–3896

    CAS  Google Scholar 

  21. Groves JT, Boxer SG, McConnell HM (2000) Electric field effects in multicomponent fluid lipid membranes. J Phys Chem B 104:119–124

    CAS  Google Scholar 

  22. Groves JT, Wulfing C, Boxer SG (1996) Electrical manipulation of glycan phosphatidyl inositol tethered proteins in planar supported bilayers. Biophys J 71:2716–2723

    CAS  Google Scholar 

  23. Groves JT, Mahal LK, Bertozzi CR (2001) Control of cell adhesion and growth with micropatterned supported lipid membranes. Langmuir 17:5129–5133

    CAS  Google Scholar 

  24. Stroumpoulis D, Zhang HN, Rubalcava L, Gliem J, Tirrell M (2007) Cell adhesion and growth to peptide-patterned supported lipid membranes. Langmuir 23:3849–3856

    CAS  Google Scholar 

  25. Cremer PS, Yang TL (1999) Creating spatially addressed arrays of planar supported fluid phospholipid membranes. J Am Chem Soc 121:8130–8131

    CAS  Google Scholar 

  26. Kumar A, Whitesides GM (1993) Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl Phys Lett 63:2002–2004

    CAS  Google Scholar 

  27. Kumar A, Whitesides GM (1994) Patterned condensation figures as optical diffraction gratings. Science 263:60–62

    CAS  Google Scholar 

  28. Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 6:600–604

    CAS  Google Scholar 

  29. Jenkins ATA, Boden N, Bushby RJ, Evans SD, Knowles PF, Miles RE, Ogier SD, Schonherr H, Vancso GJ (1999) Microcontact printing of lipophilic self-assembled monolayers for the attachment of biomimetic lipid bilayers to surfaces. J Am Chem Soc 121:5274–5280

    CAS  Google Scholar 

  30. Mrksich M, Whitesides GM (1995) Patterning self-assembled monolayers using microcontact printing–a new technology for biosensors. Trends Biotechnol 13:228–235

    CAS  Google Scholar 

  31. Han XJ, Critchley K, Zhang LX, Pradeep SND, Bushby RJ, Evans SD (2007) A novel method to fabricate patterned bilayer lipid membranes. Langmuir 23:1354–1358

    CAS  Google Scholar 

  32. Han XJ, Achalkumar AS, Bushby RJ, Evans SD (2009) A cholesterol-based tether for creating photopatterned lipid membrane arrays on both a silica and gold surface. Chem Eur J 15:6363–6370

    CAS  Google Scholar 

  33. Han XJ, Cheetham MR, Sheikh K, Olmsted PD, Bushby RJ, Evans SD (2009) Manipulation and charge determination of proteins in photopatterned solid supported bilayers. Integr Biol 1:205–211

    CAS  Google Scholar 

  34. Howland MC, Sapuri-Butti AR, Dixit SS, Dattelbaum AM, Shreve AP, Parikh AN (2005) Phospholipid morphologies on photochemically patterned silane monolayers. J Am Chem Soc 127:6752–6765

    CAS  Google Scholar 

  35. Howland MC, Szmodis AW, Sanii B, Parikh AN (2007) Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths. Biophys J 92:1306–1317

    CAS  Google Scholar 

  36. Sanii B, Parikh AN (2007) Surface-energy dependent spreading of lipid monolayers and bilayers. Soft Matter 3:974–977

    CAS  Google Scholar 

  37. Shreve AP, Howland MC, Sapuri-Butti AR, Allen TW, Parikh AN (2008) Evidence for leaflet-dependent redistribution of charged molecules in fluid supported phospholipid bilayers. Langmuir 24:13250–13253

    CAS  Google Scholar 

  38. Oliver AE, Ngassam V, Dang P, Sanii B, Wu HW, Yee CK, Yeh Y, Parikh AN (2009) Cell attachment behavior on solid and fluid substrates exhibiting spatial patterns of physical properties. Langmuir 25:6992–6996

    CAS  Google Scholar 

  39. Okazaki T, Tatsu Y, Morigaki K (2010) Phase separation of lipid microdomains controlled by polymerized lipid bilayer matrices. Langmuir 26:4126–4129

    CAS  Google Scholar 

  40. Morigaki K, Baumgart T, Jonas U, Offenhausser AM, Knoll W (2002) Photopolymerization of diacetylene lipid bilayers and its application to the construction of micropatterned biomimetic membranes. Langmuir 18:4082–4089

    CAS  Google Scholar 

  41. Morigaki K, Baumgart T, Offenhausser Am, Knoll W (2001) Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid. Angew Chem Int Edit 40:172–174

    CAS  Google Scholar 

  42. Shi JJ, Chen JX, Cremer PS (2008) Sub-100 nm Patterning of supported bilayers by nanoshaving lithography. J Am Chem Soc 130:2718–2719

    CAS  Google Scholar 

  43. Kung LA, Kam L, Hovis JS, Boxer SG (2000) Patterning hybrid surfaces of proteins and supported lipid bilayers. Langmuir 16:6773–6776

    CAS  Google Scholar 

  44. Yoshina-Ishii C, Boxer SG (2006) Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis. Langmuir 22:2384–2391

    CAS  Google Scholar 

  45. Yoshina-Ishii C, Miller GP, Kraft ML, Kool ET, Boxer SG (2005) General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc 127:1356–1357

    CAS  Google Scholar 

  46. Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697

    CAS  Google Scholar 

  47. Yee CK, Amweg ML, Parikh AN (2004) Direct photochemical patterning and refunctionalization of supported phospholipid bilayers. J Am Chem Soc 126:13962–13972

    CAS  Google Scholar 

  48. Yee CK, Amweg ML, Parikh AN (2004) Membrane photolithography: direct micropatterning and manipulation of fluid phospholipid membranes in the aqueous phase using deep-UV light. Adv Mater 16:1184–1189

    CAS  Google Scholar 

  49. Yu CH, Parikh AN, Groves JT (2005) Direct patterning of membrane-derivatized colloids using in situ UV-ozone photolithography. Adv Mater 17:1477–1480

    CAS  Google Scholar 

  50. Hovis JS, Boxer SG (2000) Patterning barriers to lateral diffusion in supported lipid bilayer membranes by blotting and stamping. Langmuir 16:894–897

    CAS  Google Scholar 

  51. Hovis JS, Boxer SG (2001) Patterning and composition arrays of supported lipid bilayers by microcontact printing. Langmuir 17:3400–3405

    CAS  Google Scholar 

  52. Majd S, Mayer M (2005) Hydrogel stamping of arrays of supported lipid bilayers with various lipid compositions for the screening of drug-membrane and protein-membrane interactions. Angew Chem Int Edit 44:6697–6700

    CAS  Google Scholar 

  53. Martin BD, Gaber BP, Patterson CH, Turner DC (1998) Direct protein microarray fabrication using a hydrogel “stamper”. Langmuir 14:3971–3975

    CAS  Google Scholar 

  54. Mayer M, Yang J, Gitlin I, Gracias DH, Whitesides GM (2004) Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. Proteomics 4:2366–2376

    CAS  Google Scholar 

  55. Weibel DB, Lee A, Mayer M, Brady SF, Bruzewicz D, Yang J, DiLuzio WR, Clardy J, Whitesides GM (2005) Bacterial printing press that regenerates its ink: contact-printing bacteria using hydrogel stamps. Langmuir 21:6436–6442

    CAS  Google Scholar 

  56. Stevens MM, Mayer M, Anderson DG, Weibel DB, Whitesides GM, Langer R (2005) Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. Biomaterials 26:7636–7641

    CAS  Google Scholar 

  57. Taylor JD, Phillips KS, Cheng Q (2007) Microfluidic fabrication of addressable tethered lipid bilayer arrays and optimization using SPR with silane-derivatized nanoglassy substrates. Lab Chip 7:927–930

    CAS  Google Scholar 

  58. Shi JJ, Yang TL, Kataoka S, Zhang YJ, Diaz AJ, Cremer PS (2007) GM(1) clustering inhibits cholera toxin binding in supported phospholipid membranes. J Am Chem Soc 129:5954–5961

    CAS  Google Scholar 

  59. Burridge KA, Figa MA, Wong JY (2004) Patterning adjacent supported lipid bilayers of desired composition to investigate receptor-ligand binding under shear flow. Langmuir 20:10252–10259

    CAS  Google Scholar 

  60. Phillips KS, Dong Y, Carter D, Cheng Q (2005) Stable and fluid ethylphosphocholine membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters. Anal Chem 77:2960–2965

    CAS  Google Scholar 

  61. Phillips KS, Cheng Q (2005) Microfluidic immunoassay for bacterial toxins with supported phospholipid bilayer membranes on poly(dimethylsiloxane). Anal Chem 77:327–334

    CAS  Google Scholar 

  62. Kam L, Boxer SG (2000) Formation of supported lipid bilayer composition arrays by controlled mixing and surface capture. J Am Chem Soc 122:12901–12902

    CAS  Google Scholar 

  63. Kam L, Boxer SG (2003) Spatially selective manipulation of supported lipid bilayers by laminar flow: steps toward biomembrane microfluidics. Langmuir 19:1624–1631

    CAS  Google Scholar 

  64. Perez TD, Nelson WJ, Boxer SG, Kam L (2005) E-cadherin tethered to micropatterned supported lipid bilayers as a model for cell adhesion. Langmuir 21:11963–11968

    CAS  Google Scholar 

  65. Dutta D, Pulsipher A, Yousaf MN (2010) Selective tethering of ligands and proteins to a microfluidically patterned electroactive fluid lipid bilayer array. Langmuir 26:9835–9841

    CAS  Google Scholar 

  66. Albertorio F, Diaz AJ, Yang TL, Chapa VA, Kataoka S, Castellana ET, Cremer PS (2005) Fluid and air-stable lipopolymer membranes for biosensor applications. Langmuir 21:7476–7482

    CAS  Google Scholar 

  67. Smith KA, Gale BK, Conboy JC (2008) Micropatterned fluid lipid bilayer arrays created using a continuous flow microspotter. Anal Chem 80:7980–7987

    CAS  Google Scholar 

  68. Joubert JR, Smith KA, Johnson E, Keogh JP, Wysocki VH, Gale BK, Conboy JC, Saavedra SS (2009) Stable, ligand-doped, poly(bis-SorbPC) lipid bilayer arrays for protein binding and detection. Acs Appl Mater Inter 1:1310–1315

    CAS  Google Scholar 

  69. Salaita K, Wang YH, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nano technol 2:145–155

    CAS  Google Scholar 

  70. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663

    CAS  Google Scholar 

  71. Lenhert S, Sun P, Wang YH, Fuchs H, Mirkin CA (2007) Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns. Small 3:71–75

    CAS  Google Scholar 

  72. Lenhert S, Mirkin CA, Fuchs H (2010) In situ lipid dip-pen nanolithography under water. Scanning 32:15–23

    CAS  Google Scholar 

  73. Lenhert S, Brinkmann F, Laue T, Walheim S, Vannahme C, Klinkhammer S, Xu M, Sekula S, Mappes T, Schimmel T, Fuchs H (2010) Lipid multilayer gratings. Nat Nanotechnol 5:275–279

    CAS  Google Scholar 

  74. Yamazaki V, Sirenko O, Schafer RJ, Nguyen L, Gutsmann T, Brade L, Groves JT (2005) Cell membrane array fabrication and assay technology. BMC Biotechnol. doi:10.1186/1472-6750-5-18

    Google Scholar 

  75. Orth RN, Kameoka J, Zipfel WR, Ilic B, Webb WW, Clark TG, Craighead HG (2003) Creating biological membranes on the micron scale: forming patterned lipid bilayers using a polymer lift-off technique. Biophys J 85:3066–3073

    CAS  Google Scholar 

  76. Moran-Mirabal JM, Edel JB, Meyer GD, Throckmorton D, Singh AK, Craighead HG (2005) Micrometer-sized supported lipid bilayer arrays for bacterial toxin binding studies through total internal reflection fluorescence microscopy. Biophys J 89:296–305

    CAS  Google Scholar 

  77. Wu M, Holowka D, Craighead HG, Baird B (2004) Visualization of plasma membrane compartmentalization with patterned lipid bilayers. P Natl Acad Sci USA 101:13798–13803

    CAS  Google Scholar 

  78. Orth RN, Wu M, Holowka DA, Craighead HG, Baird BA (2003) Mast cell activation on patterned lipid bilayers of subcellular dimensions. Langmuir 19:1599–1605

    CAS  Google Scholar 

  79. Mager MD, Melosh NA (2008) Nanopore-spanning lipid bilayers for controlled chemical release. Adv Mater 20:4423–4427

    CAS  Google Scholar 

  80. Kresak S, Hianik T, Naumann RLC (2009) Giga-seal solvent-free bilayer lipid membranes: from single nanopores to nanopore arrays. Soft Matter 5:4021–4032

    CAS  Google Scholar 

  81. Tiefenauer LX, Studer A (2008) Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes (Mini Review). Biointerphases 3: FA74-FA79

    Google Scholar 

  82. Schmitt EK, Vrouenraets M, Steinem C (2006) Channel activity of OmpF monitored in nano-BLMs. Biophys J 91:2163–2171

    CAS  Google Scholar 

  83. Romer W, Lam YH, Fischer D, Watts A, Fischer WB, Goring P, Wehrspohn RB, Gosele U, Steinem C (2004) Channel activity of a viral transmembrane peptide in micro-BLMs: vpu(1–32) from HIV-1. J Am Chem Soc 126:16267–16274

    Google Scholar 

  84. Mayer M, Kriebel JK, Tosteson MT, Whitesides GM (2003) Microfabricated teflon membranes for low-noise recordings of ion channels in planar lipid bilayers. Biophys J 85:2684–2695

    CAS  Google Scholar 

  85. Hansen JS, Perry M, Vogel J, Groth JS, Vissing T, Larsen MS, Geschke O, Emneus J, Bohr H, Nielsen CH (2009) Large scale biomimetic membrane arrays. Anal Bioanal Chem 395:719–727

    CAS  Google Scholar 

  86. Hansen JS, Perry M, Vogel J, Vissing T, Hansen CR, Geschke O, Emneus J, Nielsen CH (2009) Development of an automation technique for the establishment of functional lipid bilayer arrays. J Micromech Microeng. doi:10.1088/0960-1317/19/2/025014

    Google Scholar 

  87. Vogel J, Perry M, Hansen JS, Bolinger PY, Nielsen CH, Geschke O (2009) A support structure for biomimetic applications. J Micromech Microeng. doi:10.1088/0960-1317/19/2/025026

    Google Scholar 

  88. Koynov S, Brandt MS, Stutzmann M (2009) Ordered Si nanoaperture arrays for the measurement of ion currents across lipid membranes. Appl Phys Lett doi:10.1063/1.3171931

  89. Heyderman LJ, Ketterer B, Bachle D, Glaus F, Haas B, Schift H, Vogelsang K, Gobrecht J, Tiefenauer L, Dubochet O, Surbled P, Hessler T (2003) High volume fabrication of customised nanopore membrane chips. Microelectron Eng 67–68:208–213

    Google Scholar 

  90. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    CAS  Google Scholar 

  91. Singhvi R, Kumar A, Lopez GP, Stephanopoulos GN, Wang DIC, Whitesides GM, Ingber DE (1994) Engineering cell-shape and function. Science 264:696–698

    CAS  Google Scholar 

  92. Mcconnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell–cell recognition in the immune-system. Biochim Biophys Acta 864:95–106

    CAS  Google Scholar 

  93. Watts TH, Mcconnell HM (1987) Biophysical aspects of antigen recognition by t-cells. Annu Rev Immunol 5:461–475

    CAS  Google Scholar 

  94. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    CAS  Google Scholar 

  95. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiological flow-rates—distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    CAS  Google Scholar 

  96. Alon R, Hammer DA, Springer TA (1995) Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542

    CAS  Google Scholar 

  97. Stelzle M, Miehlich R, Sackmann E (1992) 2-Dimensional microelectrophoresis in supported lipid bilayers. Biophys J 63:1346–1354

    CAS  Google Scholar 

  98. Poo MM, Robinson KR (1977) Electrophoresis of concanavalin-A receptors along embryonic muscle-cell membrane. Nature 265:602–605

    CAS  Google Scholar 

  99. Lieto AM, Cush RC, Thompson NL (2003) Ligand-receptor kinetics measured by total internal reflection with fluorescence correlation spectroscopy. Biophys J 85:3294–3302

    CAS  Google Scholar 

  100. Merritt EA, Sarfaty S, Vandenakker F, Lhoir C, Martial JA, Hol WGJ (1994) Crystal-structure of cholera-toxin b-pentamer bound to receptor G(M1) pentasaccharide. Protein Sci 3:166–175

    CAS  Google Scholar 

  101. Herreros J, Schiavo G (2002) Lipid microdomains are involved in neurospecific binding and internalisation of clostridial neurotoxins. Inter J Med Microbiol 291:447–453

    CAS  Google Scholar 

  102. Angstrom J, Teneberg S, Karlsson KA (1994) Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio-cholerae, Escherichia-coli, and Clostridium-tetani–evidence for overlapping epitopes. P Natl Acad Sci U S A 91:11859–11863

    CAS  Google Scholar 

  103. Drews J (2000) Drug discovery: a historical perspective. Science 257:1960–1964

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21003032) and the program for New Century Excellent Talents in University (Grant No. NCET-09-0054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Han, X., Qi, G., Xu, X., Wang, L. (2012). Lipid Bilayer Membrane Arrays: Fabrication and Applications. In: Zhong, JJ. (eds) Future Trends in Biotechnology. Advances in Biochemical Engineering/Biotechnology, vol 131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2012_135

Download citation

Publish with us

Policies and ethics