Skip to main content

Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production

  • Chapter
  • First Online:
Biotechnology in China III: Biofuels and Bioenergy

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 128))

Abstract

Second-generation bioethanol made from lignocellulosic biomass is considered one of the most promising biofuels. However, the enzymatic hydrolysis of the cellulose component to liberate glucose for ethanol fermentation is one of the major barriers for the process to be economically competitive because of the recalcitrance of feedstock. In this chapter, the progress on the understanding of the mechanisms of lignocellulose degradation, as well as the identification and optimization of fungal cellulases, cellulolytic strains, and cellulase production is reviewed. The physiologic functions and enzymatic mechanisms of two groups of enzymes involved in lignocellulose degradation, cellulases and hemicellulases, are discussed, and the synergism of the cellulase components during lignocellulose degradation is addressed. Furthermore, the methods for screening filamentous fungal strains capable of degrading lignocellulose are evaluated and the production of cellulases by these fungal strains is discussed. Aside from traditional mutagenesis for improving the secretion level and enzymatic activities of cellulases from filamentous fungal species, genetic engineering of strains and protein engineering on cellulase molecules are also highlighted.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rass-Hansen J, Falsig H, Jørgensen B et al (2007) Bioethanol: fuel or feedstock? J Chem Technol Biotechnol 82(4):329–333

    CAS  Google Scholar 

  2. Searchinger T, Heimlich R, Houghton RA et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    CAS  Google Scholar 

  3. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    CAS  Google Scholar 

  4. Fang X, Shen Y, Zhao J et al (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour Technol 101(13):4814–4819

    CAS  Google Scholar 

  5. Chen H, Han Y, Xu J (2008) Simultaneous saccharification and fermentation of steam exploded wheat straw pretreated with alkaline peroxide. Process Biochem 43(12):1462–1466

    CAS  Google Scholar 

  6. Liu K, Lin X, Yue J et al (2010) High concentration ethanol production from corncob residues by fed-batch strategy. Bioresour Technol 101(13):4952–4958

    CAS  Google Scholar 

  7. Ouyang J, Dong Z, Song X et al (2010) Improved enzymatic hydrolysis of microcrystalline cellulose (Avicel PH101) by polyethylene glycol addition. Bioresour Technol 101(17):6685–6691

    CAS  Google Scholar 

  8. Qu Y, Zhu M, Liu K et al (2006) Studies on cellulosic ethanol production for sustainable supply of liquid fuel in China. Biotechnol J 1(11):1235–1240

    CAS  Google Scholar 

  9. Zhang M, Su R, Qi W et al (2010) Enhanced enzymatic hydrolysis of lignocellulose by optimizing enzyme complexes. Appl Biochem Biotechnol 160(5):1407–1414

    CAS  Google Scholar 

  10. Wu X, Zhao R, Wang D et al (2006) Effects of amylose, corn protein, and corn fiber contents on production of ethanol from starch-rich media. Cereal Chem 83(5):569–575

    CAS  Google Scholar 

  11. Singh R, Varma AJ, Seeta Laxman R et al (2009) Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase. Bioresour Technol 100(24):6679–6681

    CAS  Google Scholar 

  12. Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  13. Wingren A (2005) Ethanol from softwood: techno-economic evaluation for development of the enzymatic process. PhD dissertation, Lund University

    Google Scholar 

  14. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg 32(5):422–430

    CAS  Google Scholar 

  15. Vinzant TB, Adney WS, Decker SR et al (2001) Fingerprinting Trichoderma reesei hydrolases in a commercial cellulase preparation. Appl Biochem Biotechnol 91–93:99–107

    Google Scholar 

  16. Esterbauer H (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresour Technol 36(1):51–65

    CAS  Google Scholar 

  17. Sun W, Cheng C, Lee W (2008) Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochem 43(10):1083–1087

    CAS  Google Scholar 

  18. Lynd LR, Weimer PJ, van Zyl WH et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    CAS  Google Scholar 

  19. Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391

    CAS  Google Scholar 

  20. Polizeli ML, Rizzatti AC, Monti R et al (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67(5):577–591

    CAS  Google Scholar 

  21. Wong KK, Tan LU, Saddler JN (1988) Multiplicity of β-1, 4-xylanase in microorganisms: functions and applications. Microbiol Rev 52(3):305–317

    CAS  Google Scholar 

  22. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    CAS  Google Scholar 

  23. Moreira LR, Filho EX (2008) An overview of mannan structure and mannan-degrading enzyme systems. Appl Microbiol Biotechnol 79(2):165–178

    CAS  Google Scholar 

  24. Fang X, Qin Y, Li X et al (2010) Progress on cellulase and enzymatic hydrolysis of lignocellulosic biomass. China J Biotechnol 26(7):864–869

    CAS  Google Scholar 

  25. Baker JO, Ehrman CI, Adney WS (1998) Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl Biochem Biotechnol 70–72:395–403

    Google Scholar 

  26. Levin SE, Fox JM, Clark DS et al (2011) A mechanistic model for rational design of optimal cellulase mixtures. Biotechnol Bioeng 108(11):2561–2570

    Google Scholar 

  27. Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824

    CAS  Google Scholar 

  28. Wang L, Zhang Y, Gao P et al (2006) Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis. Biotechnol Bioeng 93(3):443–456

    CAS  Google Scholar 

  29. Wang L, Zhang Y, Gao P (2008) A novel function for the cellulose binding module of cellobiohydrolase I. Sci China C Life Sci 51(7):620–629

    CAS  Google Scholar 

  30. Lehtio J, Sugiyama J, Gustavsson M et al (2003) The binding specificity and affinity determinants of family 1 and family 3 cellulose binding modules. Proc Natl Acad Sci USA 100(2):484–489

    CAS  Google Scholar 

  31. Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad Sci USA 93(22):12251–12255

    CAS  Google Scholar 

  32. Wang T, Zou Y, Shi Y et al (2000) Expression and characteristic of secretary CBDCBH1 from Penicillium janthinellum in E.coli. Chin J Biochem Mol Biol 16(5):644–649

    CAS  Google Scholar 

  33. Zhong L, Matthews JF, Hansen PI et al (2009) Computational simulations of the Trichoderma reesei cellobiohydrolase I acting on microcrystalline cellulose Ibeta: the enzyme-substrate complex. Carbohydr Res 344(15):1984–1992

    CAS  Google Scholar 

  34. Xiao Z, Gao P, Qu Y et al (2001) Cellulose-binding domain of endoglucanase III from Trichoderma reesei disrupting the structure of cellulose. Biotechnol Lett 23(9):711–715

    CAS  Google Scholar 

  35. Divne C, Stahlberg J, Teeri TT et al (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 angstrom long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275(2):309–325

    CAS  Google Scholar 

  36. Varrot A, Frandsen TP, von Ossowski I et al (2003) Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. Structure 11(7):855–864

    CAS  Google Scholar 

  37. Zhao X, Rignall TR, McCabe C et al (2008) Molecular simulation evidence for processive motion of Trichoderma reesei Cel7A during cellulose depolymerization. Chem Phys Lett 460(1–3):284–288

    CAS  Google Scholar 

  38. Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262(3):637–643

    CAS  Google Scholar 

  39. Mattinen ML, Linder M, Teleman A et al (1997) Interaction between cellohexaose and cellulose binding domains from Trichoderma reesei cellulases. FEBS Lett 407(3):291–296

    CAS  Google Scholar 

  40. Receveur V, Czjzek M, Schulein M et al (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277(43):40887–40892

    CAS  Google Scholar 

  41. Igarashi K, Koivula A, Wada M et al (2009) High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 284(52):36186–36190

    CAS  Google Scholar 

  42. Zhao Y, Wu B, Yan B et al (2004) Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Sci China C Life Sci 47(1):18–24

    CAS  Google Scholar 

  43. Ma A, Hu Q, Qu Y et al (2008) The enzymatic hydrolysis rate of cellulose decreases with irreversible adsorption of cellobiohydrolase I. Enzyme Microb Technol 42(7):543–547

    CAS  Google Scholar 

  44. Chen M, Qin Y, Liu Z et al (2010) Isolation and characterization of a β-glucosidase from Penicillium decumbens and improving hydrolysis of corncob residue by using it as cellulase supplementation. Enzyme Microb Technol 46(6):444–449

    CAS  Google Scholar 

  45. Chauve M, Mathis H, Huc D et al (2010) Comparative kinetic analysis of two fungal β-glucosidases. Biotechnol Biofuels 3(1):3

    Google Scholar 

  46. Ma L, Zhang J, Zou G (2011) Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microb Technol. doi: 10.1016/j.enzmictec.2011.06.013

  47. Shen Y, Zhang Y, Ma T et al (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing beta-glucosidase. Bioresour Technol 99(11):5099–5103

    CAS  Google Scholar 

  48. Han Y, Chen H (2007) Synergism between corn stover protein and cellulase. Enzyme Microb Technol 41(5):638–645

    CAS  Google Scholar 

  49. Han Y, Chen H (2008) Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresour Technol 99(14):6081–6087

    CAS  Google Scholar 

  50. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100(18):4203–4213

    CAS  Google Scholar 

  51. Zeng W, Chen H (2009) Synergistic effect of feruloyl esterase and cellulase in hydrolyzation of steam-exploded rice straw. China J Biotechnol 25(1):49–54

    CAS  Google Scholar 

  52. van Peij NN, Brinkmann J, Vrsanska M et al (1997) β-xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur J Biochem 245(1):164–173

    Google Scholar 

  53. de Vries RP, Kester HC, Poulsen CH et al (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327(4):401–410

    Google Scholar 

  54. Yu H, Zhang X, Song L et al (2010) Evaluation of white-rot fungi-assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulase. J Biosci Bioeng 110(6):660–664

    CAS  Google Scholar 

  55. Jing X, Zhang X, Bao J (2009) Inhibition performance of lignocellulose degradation products on industrial cellulase enzymes during cellulose hydrolysis. Appl Biochem Biotechnol 159(3):696–707

    CAS  Google Scholar 

  56. Chen H, Liu L (2007) Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol 98(3):666–676

    Google Scholar 

  57. Wang W, Liu J, Chen G et al (2003) Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Curr Microbiol 46(5):371–379

    Google Scholar 

  58. Saloheimo M, Paloheimo M, Hakola S et al (2002) Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials. Eur J Biochem 269(17):4202–4211

    CAS  Google Scholar 

  59. Yao Q, Sun T, Liu W et al (2008) Gene cloning and heterologous expression of a novel endoglucanase, swollenin, from Trichoderma pseudokoningii S38. Biosci Biotechnol Biochem 72(11):2799–2805

    CAS  Google Scholar 

  60. Zhou Q, Lv X, Zhang X et al (2011) Evaluation of swollenin from Trichoderma pseudokoningii as a potential synergistic factor in the enzymatic hydrolysis of cellulose with low cellulase loadings. World J Microbiol Biotechnol. doi:10.1007/s11274-011-0650-5

  61. Shi Q, Sun J, Yu H et al (2011) Catalytic performance of corn stover hydrolysis by a new isolate Penicillium sp ECU0913 producing both cellulase and xylanase. Appl Biochem Biotechnol 164(6):819–830

    CAS  Google Scholar 

  62. Montenecourt BS, Eveleigh DE (1977) Semiquantitative plate assay for determination of cellulase production by Trichoderma viride. Appl Environ Microbiol 33(1):178–183

    CAS  Google Scholar 

  63. Saddler JN (1982) Screening of highly cellulolytic fungi and the action of their cellulase enzyme systems. Enzyme Microb Technol 4:414–418

    CAS  Google Scholar 

  64. Qu Y, Gao P, Wang Z (1984) Screening of catabolite repression-resistant mutants of cellulase producing Penicillium spp. Acta Microbiol Sin 3:238–1243

    Google Scholar 

  65. Ma D, Gao P, Wang Z (1990) Preliminary studies on the mechanism of cellulase formation by Trichoderma pseudokoningii S-38. Enzyme Microb Technol 12:631–635

    CAS  Google Scholar 

  66. Liu C, Cai M, Ma X (1993) Screening of a β-glucosidase product repression resistant Penicillium decumbens strain. Microbiol Res Appl 613:5–8

    Google Scholar 

  67. Jiang X, Geng A, He N et al (2011) New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. J Biosci Bioeng 111(2):121–127

    CAS  Google Scholar 

  68. Xu F, Wang J, Chen S et al (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Prikl Biokhim Mikrobiol 47(1):61–65

    CAS  Google Scholar 

  69. Wang F, Wang T, Zhang G et al (2003) Screening and characterization of the cold-adaptive cellulase-producing bacteria. Mar Sci 27(5):42–45

    CAS  Google Scholar 

  70. Chen L, Chi N, Zhang Q (2009) Breeding and fermentation medium optimization of cold-active cellulase strain CNY086(I). Microbiology 36:1547–1552

    Google Scholar 

  71. Chen L, Chi N, Zhang Q (2011a) Research of cold-active cellulase produced by SWD-28 (Penicillium sp.). Biotechnology 21:84–88

    Google Scholar 

  72. Wu Q, Yuan L, Lu F et al (2010) Screening and identification of an alkaline cellulase-producing strain. Biotechnol Bull 9:205–209

    Google Scholar 

  73. Liu J, Liu W, Zhao X et al (2011) Cloning and functional characterization of a novel endo-β-1, 4-glucanase gene from a soil-derived metagenomic library. Appl Microbiol Biotechnol 89(4):1083–1092

    CAS  Google Scholar 

  74. Qin Y, Wei X, Liu X et al (2008) Purification and characterization of recombinant endoglucanase of Trichoderma reesei expressed in Saccharomyces cerevisiae with higher glycosylation and stability. Protein Expr Purif 58(1):162–167

    CAS  Google Scholar 

  75. Liu G, Wei X, Qin Y et al (2010) Characterization of the endoglucanase and glucomannanase activities of a glycoside hydrolase family 45 protein from Penicillium decumbens 114-2. J Gen Appl Microbiol 56(3):223–229

    CAS  Google Scholar 

  76. Jørgensen H, Morkeberg A, Krogh KBR et al (2005) Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 36(1):42–48

    Google Scholar 

  77. Qu Y, Zhao X, Gao P et al (1991) Cellulase production from spent sulfite liquor and paper-mill waste fiber. Appl Biochem Biotechnol 28–29:363–368

    Google Scholar 

  78. Hoffman RM, Wood TM (1985) Isolation and partial characterization of a mutant of Penicillium funiculosum for the saccharification of straw. Biotechnol Bioeng 27(1):81–85

    CAS  Google Scholar 

  79. Hou Y, Wang T, Long H et al (2007) Cloning, sequencing and expression analysis of the first cellulase gene encoding cellobiohydrolase 1 from a cold-adaptive Penicillium chrysogenum FS010. Acta Biochim Biophys Sin 39(2):101–107

    CAS  Google Scholar 

  80. Chulkin AM, Loginov DS, Vavilova EA et al (2009) Enzymological properties of endo-(1–4)-beta-glucanase Eg12p of Penicillium canescens and characteristics of structural gene egl2. Biochemistry (Mosc) 74(6):655–662

    CAS  Google Scholar 

  81. Kurasawa T, Yachi M, Suto M et al (1992) Induction of cellulase by gentiobiose and its sulfur-containing analog in Penicillium purpurogenum. Appl Environ Microbiol 58(1):106–110

    CAS  Google Scholar 

  82. Krogh KB, Morkeberg A, Jorgensen H et al (2004) Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 113–116:389–401

    Google Scholar 

  83. Yu H, Zeng G, Huang G et al (2005) Lignin degradation by Penicillium simplicissimum. Environ Sci 26(2):167–171

    CAS  Google Scholar 

  84. Dutta T, Sahoo R, Sengupta R et al (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35(4):275–282

    CAS  Google Scholar 

  85. Rosenthal AL, Nordin JH (1975) Enzymes that hydrolyze fungal cell wall polysaccharides: The carbonhydrate constitution of mycodextranse, an endo-α (1→4)-d-glucanase from Pencillium melinii. J Biol Chem 250(14):5295–5303

    CAS  Google Scholar 

  86. Solov’eva IV, Okunev ON, Vel’kov VV et al (2005) The selection and properties of Penicillium verruculosum mutants with enhanced production of cellulases and xylanases. Mikrobiologiia 74(2):172–178

    Google Scholar 

  87. Jeya M, Joo AR, Lee KM et al (2009) Characterization of endo-β-1,4-glucanase from a novel strain of Penicillium pinophilum KMJ601. Appl Microbiol Biotechnol 85(4):1005–1014

    Google Scholar 

  88. Rubini MR, Dillon AJ, Kyaw CM et al (2010) Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. J Appl Microbiol 108(4):1187–1198

    CAS  Google Scholar 

  89. Bhiri F, Chaabouni SE, Limam F et al (2008) Purification and biochemical characterization of extracellular β-glucosidases from the hypercellulolytic Pol6 mutant of Penicillium occitanis. Appl Biochem Biotechnol 149(2):169–182

    CAS  Google Scholar 

  90. Garcia B, Castellanos A, Menendez J et al (2001) Molecular cloning of an α-glucosidase-like gene from Penicillium minioluteum and structure prediction of its gene product. Biochem Biophys Res Commun 281(1):151–158

    CAS  Google Scholar 

  91. Cheng Y, Song X, Qin Y et al (2009) Genome shuffling improves production of cellulase by Penicillium decumbens JU-A10. J Appl Microbiol 107(6):1837–1846

    CAS  Google Scholar 

  92. Dong X, Du C, Lin J (2008) Fermentation condition optimization by Penicillium decumbens Ju-A10 for CMCase production using response surface analysis (RSA). Ind Microbiol 38(2):20–22

    CAS  Google Scholar 

  93. Gao L, Wang F, Gao F et al (2011) Purification and characterization of a novel cellobiohydrolase (PdCel6A) from Penicillium decumbens JU-A10 for bioethanol production. Bioresour Technol 102(17):8339–8342

    Google Scholar 

  94. Li Z, Du C, Zhong Y et al (2010) Development of a highly efficient gene targeting system allowing rapid genetic manipulations in Penicillium decumbens. Appl Microbiol Biotechnol 87(3):1065–1076

    CAS  Google Scholar 

  95. Wei X, Qin Y, Qu Y (2010) Molecular cloning and characterization of two major endoglucanases from Penicillium decumbens. J Microbiol Biotechnol 20(2):265–270

    CAS  Google Scholar 

  96. Sun X, Liu Z, Qu Y et al (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146(1–3):119–128

    CAS  Google Scholar 

  97. Sun X, Liu Z, Zheng K et al (2008) The composition of basal and induced cellulase systems in Penicillium decumbens under induction or repression conditions. Enzyme Microb Technol 42(7):560–567

    CAS  Google Scholar 

  98. Su X, Chu X, Dong Z (2009) Identification of elevated transcripts in a Trichoderma reesei strain expressing a chimeric transcription activator using suppression subtractive hybridization. World J Microbiol Biotechnol 25(6):1075–1084

    CAS  Google Scholar 

  99. Liu Z, Sun X, Qu Y (2008) Cloning cellobiohydrolase I from Penicillium decumbens 114-2 with TAIL-PCR and comparing with its derepressed mutant JU-A10. Acta Microbiol Sin 48(5):667–671

    CAS  Google Scholar 

  100. Wang D, Qu Y, Gao P (1995) Regulation of cellulase synthesis in mycelial fungi. Biotechnol Lett 17(6):593–598

    CAS  Google Scholar 

  101. He J, Yu B, Zhang K et al (2009) Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian J Microbiol 49(2):188–195

    CAS  Google Scholar 

  102. Liu T, Wang T, Li X et al (2008) Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization. Acta Biochim Biophys Sin 40(2):158–165

    CAS  Google Scholar 

  103. Zhang J, Zhong Y, Zhao X et al (2010) Development of the cellulolytic fungus Trichoderma reesei strain with enhanced β-glucosidase and filter paper activity using strong artificial cellobiohydrolase 1 promoter. Bioresour Technol 101(24):9815–9818

    CAS  Google Scholar 

  104. Wang T, Liu T, Wu Z et al (2004) Novel cellulase profile of Trichoderma reesei strains constructed by cbh1 gene replacement with eg3 gene expression cassette. Acta Biochim Biophys Sin 36(10):667–672

    CAS  Google Scholar 

  105. Xiao Z, Wang P, Qu Y et al (2002) Cold adaptation of a mesophilic cellulase, EG III from Trichoderma reesei, by directed evolution. Sci China C Life Sci 45(4):337–343

    CAS  Google Scholar 

  106. Wang T, Liu X, Yu Q et al (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22(1–3):89–94

    CAS  Google Scholar 

  107. Qin Y, Wei X, Song X et al (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135(2):190–195

    CAS  Google Scholar 

  108. Qin Y, Wei X, Song X et al (2008) The role of the site 342 in catalytic efficiency and pH optima of endoglucanase II from Trichoderma reesei as probed by saturation mutagenesis. Biocatal Biotransfor 26(5):378–382

    CAS  Google Scholar 

  109. Yu X, Koo YM (1998) Cellulase production by Trichoderma reesei in submerged fermentation. Ferment Ind 24:20–25

    CAS  Google Scholar 

  110. Duan XY, Liu SY, Zhang WC et al (2004) Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J Appl Microbiol 96(4):772–776

    CAS  Google Scholar 

  111. Yang X, Yu X (2008) Cellulase production by Trichoderma reesei from bagasse pretreated by alkali and microwave. Chin J Bioprocess Eng 6:61–65

    CAS  Google Scholar 

  112. Yao L, Yue J, Zhao J et al (2010) Application of acidic wastewater from monosodium glutamate process in pretreatment and cellulase production for bioconversion of corn stover—feasibility evaluation. Bioresour Technol 101(22):8755–8761

    CAS  Google Scholar 

  113. Yu X, Koo YM (1999) Cellulase production by Trichoderma reesei Rut C-30 with batch and fed-batch fermentation. Food Ferment Ind 25:16–19

    CAS  Google Scholar 

  114. Qu Y, Gao P (1992) Improvement of cellulase composition by solid-state mixed culture of Penicillium decumbens and Aspergillus sp. Ind Microbiol 22:1–9

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program, no. 2011CB707403), the International Science and Technology Cooperation Program of China (no. 2010DFA32560), and the Program for New Century Excellent Talents in University (NCET). We thank Didi He for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, M., Li, Z., Fang, X., Wang, L., Qu, Y. (2012). Cellulolytic Enzyme Production and Enzymatic Hydrolysis for Second-Generation Bioethanol Production. In: Bai, FW., Liu, CG., Huang, H., Tsao, G. (eds) Biotechnology in China III: Biofuels and Bioenergy. Advances in Biochemical Engineering Biotechnology, vol 128. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2011_131

Download citation

Publish with us

Policies and ethics