Skip to main content

Design, Synthesis, and Biological Application of Fluorescent Sensor Molecules for Cellular Imaging

  • Chapter
  • First Online:
Nano/Micro Biotechnology

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 119))

Abstract

Cellular imaging has achieved many new biological findings, among them GFP and other fluorescent proteins and small molecule based fluorescent sensors have been widely used, especially in the last decade. The design concept and application of chemical sensors are described, these being FRET based sensors and Zn2+ sensors.

Fluorescence resonance energy transfer (FRET) has been used extensively as the designing principle for fluorescent sensor molecules. One of the most significant advantages of designing sensor molecules with FRET modulation is that it can enable ratiometric measurement in living cells, which reduces the artifact from microscopic imaging systems. The design strategy for the development of small molecular FRET sensors is described in terms of avoiding close contact of donor fluorophore and acceptor fluorophore in aqueous solution. Furthermore, a strategy to design FRET sensors with modulating overlap integrals of donor and acceptor is introduced.

Numerous tools for Zn2+ sensing in living cells have become available in the last 8 years. Among them, fluorescence imaging using fluorescent sensor molecules has been the most popular approach. Some of these sensor molecules can be used to visualize Zn2+ in living cells. Some of the biological functions of Zn2+ were clarified using these sensor molecules, especially in neuronal cells, which contain a high concentration of free Zn2 +.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsien RY (1994) Chem Eng News 72:34

    Article  CAS  Google Scholar 

  2. Czarnik AW (1995) Chem Biol 2:423

    Article  CAS  Google Scholar 

  3. Rurack K, Resch-Genger U (2002) Chem Soc Rev 31:116

    Article  CAS  Google Scholar 

  4. Grynkiewicz G, Poenie M, Tsien RY (1985) J Biol Chem 260:3440

    CAS  Google Scholar 

  5. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882

    Article  CAS  Google Scholar 

  6. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Anal Chem 70:2446

    Article  CAS  Google Scholar 

  7. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) J Am Chem Soc 122:12399

    Article  CAS  Google Scholar 

  8. Tsien RY, Harootunian AT (1990) Cell Calcium 11:93

    Article  CAS  Google Scholar 

  9. Minta A, Tsien RY (1989) J Biol Chem 264:19449

    CAS  Google Scholar 

  10. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K (2002) J Am Chem Soc 124:3920

    Article  CAS  Google Scholar 

  11. Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T (2002) J Am Chem Soc 124:10650

    Article  CAS  Google Scholar 

  12. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Book  Google Scholar 

  13. Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY (1991) Nature 349:694

    Article  CAS  Google Scholar 

  14. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M (2001) Nature 411:1065

    Article  CAS  Google Scholar 

  15. Zlokarnik G, Negulescu PA, Knapp TE, Mere L, Burres N, Feng L, Whitney M, Roemer K, Tsien RY (1998) Science 279:84

    Article  CAS  Google Scholar 

  16. Gonzalez JE, Tsien RY (1995) Biophys J 69:1272

    Article  CAS  Google Scholar 

  17. Kawanishi Y, Kikuchi K, Takakusa H, Mizukami S, Urano Y, Higuchi T, Nagano T (2000) Angew Chem Int Ed 39:3438

    Article  CAS  Google Scholar 

  18. Takakusa H, Kikuchi K, Urano Y, Sakamoto S, Yamaguchi K, Nagano T (2002) J Am Chem Soc 124:1653

    Article  CAS  Google Scholar 

  19. Takakusa H, Kikuchi K, Urano Y, Higuchi T, Nagano T (2001) Anal Chem 73:939

    Article  CAS  Google Scholar 

  20. Mizukami S, Kikuchi K, Higuchi T, Urano Y, Mashima T, Tsuruo T, Nagano T (1999) FEBS Lett 453:356

    Article  CAS  Google Scholar 

  21. Gurtu V, Kain SR, Zhang G (1997) Anal Biochem 25:198

    Google Scholar 

  22. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, Dixit VM (1995) Cell 81:801

    Article  CAS  Google Scholar 

  23. Packard BZ, Toptygin DD, Komoriya A, Brand L (1997) Biophys Chem 67:167

    Article  Google Scholar 

  24. Daugherty DL, Gellman SH (1999) J Am Chem Soc 121:4325

    Article  CAS  Google Scholar 

  25. Geoghegan KL, Rosner PJ, Hoth LR (2000) Bioconjug Chem 11:71

    Article  CAS  Google Scholar 

  26. Valdes-Aguilera O, Neckers DC (1989) Acc Chem Res 22:171

    Article  CAS  Google Scholar 

  27. West WS, Pearce J (1965) Phys Chem 69:1894

    Article  CAS  Google Scholar 

  28. Li Y, Glazer AN (1999) Bioconjug Chem 10:241

    Article  CAS  Google Scholar 

  29. Sträter N, Lipscomb WN, Klabunde T, Krebs B (1996) Angew Chem Int Ed 35:2024

    Article  Google Scholar 

  30. Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Crit Rev Biochem Mol 35:393

    Article  CAS  Google Scholar 

  31. Zimmermann H (1999) Trends Pharmacol Sci 20:231

    Article  CAS  Google Scholar 

  32. Goding JW, Terkeltaub R, Maurice M, Deterre P, Sali A, Belli SI (1998) Immunol Rev 161:11

    Article  CAS  Google Scholar 

  33. Clair T, Lee HY, Liotta LA, Stracke ML (1997) J Biol Chem 272:996

    Article  CAS  Google Scholar 

  34. Berkessel A, Riedl R (1997) Angew Chem Int Ed 36:1481

    Article  CAS  Google Scholar 

  35. Takakusa H, Kikuchi K, Urano Y, Kojima H, Nagano T (2003) Chem Eur J 9:1479

    Article  CAS  Google Scholar 

  36. Majeti R, Weiss A (2001) Chem Rev 101:2441

    Article  CAS  Google Scholar 

  37. Wang QP, Scheigetz J, Gilbert M, Snider J, Ramachandran C (1999) Biochim Biophys Acta 1431:14

    Article  CAS  Google Scholar 

  38. Zalewski PD, Forbes IJ, Betts WH (1993) Biochem J 296:403–408

    CAS  Google Scholar 

  39. Ueno S, Tsukamoto M, Hirano T, Kikuchi K, Yamada MK, Nishiyama M, Nagano T, Matsuki N, Ikegaya Y (2002) J Cell Biol 158:215–220

    Article  CAS  Google Scholar 

  40. Sensi SL, Ton-That D, Sullivan PG, Jonas EA, Gee KR, Kaczmarek LK, Weiss JH (2003) Proc Natl Acad Sci U S A 100:6157–6162

    Article  CAS  Google Scholar 

  41. da Silva JJRF, Williams RJP (2001) The biological chemistry of elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, New York pp 315–339

    Google Scholar 

  42. Zalewski PD, Jian X, Soon LLL, Breed WG, Seamark RF, Lincoln SF, Ward AD, Sun FZ (1996) Reprod Fertil Dev 8:1097–1105

    Article  CAS  Google Scholar 

  43. Weiss JH, Sensi SL, Koh JY (2000) Trends Pharm Sci 21:395–401

    Article  CAS  Google Scholar 

  44. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) Angew Chem Int Ed 39:1052–1054

    Article  CAS  Google Scholar 

  45. Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T (2000) J Am Chem Soc 122:12399–12400

    Article  CAS  Google Scholar 

  46. Hirano T, Kikuchi K, Urano Y, Nagano T (2002) J Am Chem Soc 124:6555–6562

    Article  CAS  Google Scholar 

  47. Lee YV, Hough CJ, Sarvey JM (2003) Sci STKE:pe19

    Google Scholar 

  48. Komatsu K, Kikuchi K, Urano Y, Kojima H, Nagano T (2005) J Am Chem Soc 127:10197

    Article  CAS  Google Scholar 

  49. Kawabata E, Kikuchi K, Urano Y, Kojima H, Odani A, Nagano T (2005) J Am Chem Soc 127:818

    Article  CAS  Google Scholar 

  50. Maruyama S, Kikuchi K, Hirano T, Urano Y, Nagano T (2002) J Am Chem Soc 124:10650

    Article  CAS  Google Scholar 

  51. Dineley KE, Malaiyandi LM, Reynolds IJ (2002) Mol Pharmacol 62:618

    Article  CAS  Google Scholar 

  52. MacDiarmid CW, Milanick MA, Eide DJ (2003) J Biol Chem 278:15065

    Article  CAS  Google Scholar 

  53. Henary MM, Fahrni CJ (2002) J Phys Chem A 106:5210

    Article  CAS  Google Scholar 

  54. Fahrni CJ, Henary MM, VanDerveer DG (2002) J Phys Chem A 106:7655

    Article  CAS  Google Scholar 

  55. Henary MM, Wu Y, Fahrni CJ (2004) Chem Eur J 10:3015

    Article  CAS  Google Scholar 

  56. Taki M, Wolford JL, O’Halloran TV (2004) J Am Chem Soc 126:712

    Article  CAS  Google Scholar 

  57. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2003) Angew Chem Int Ed 42:2996

    Article  CAS  Google Scholar 

  58. Hanaoka K, Kikuchi K, Kojima H, Urano Y, Nagano T (2004) J Am Chem Soc 126:12470

    Article  CAS  Google Scholar 

  59. Hanaoka K, Kikuchi K, Kobayashi S, Nagano T (2007) J Am Chem Soc 128:13502

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Kikuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kikuchi, K. (2009). Design, Synthesis, and Biological Application of Fluorescent Sensor Molecules for Cellular Imaging. In: Endo, I., Nagamune, T. (eds) Nano/Micro Biotechnology. Advances in Biochemical Engineering / Biotechnology, vol 119. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_42

Download citation

Publish with us

Policies and ethics