Skip to main content

Technical Strategies to Improve Tissue Engineering of Cartilage-Carrier-Constructs

  • Chapter
Bioreactor Systems for Tissue Engineering

Technical aspects play an important role in tissue engineering. Especially an improved design of bioreactors is crucial for cultivation of artificial three-dimensional tissues in vitro. Here formation of cartilage-carrier-constructs is used to demonstrate that the quality of the tissue can be significantly improved by using optimized culture conditions (oxygen concentration, growth factor combination) as well as special bioreactor techniques to induce fluid-dynamic, hydrostatic or mechanical load during generation of cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Godbey WT, Atala A (2002) In vitro systems for tissue engineering. Ann N Y Acad Sci 961: 10–26

    Article  CAS  PubMed  Google Scholar 

  2. Griffith LG, Naughton G (2002) Tissue engineering-current challenges and expanding opportunities. Science 295: 1009–1014

    Article  CAS  PubMed  Google Scholar 

  3. Koch RJ, Gorti GK (2002) Tissue engineering with chondrocytes. Facial Plast Surg 18: 59–68

    Article  PubMed  Google Scholar 

  4. Lalan S, Pomerantseva I, Vacanti JP (2001) Tissue engineering and its potential impact on surgery. World J Surg 25: 1458–1466

    Article  CAS  PubMed  Google Scholar 

  5. Langer R (2000) Tissue engineering. Mol Ther 1: 12–15

    Article  CAS  PubMed  Google Scholar 

  6. Naughton GK (2002) From lab bench to market: critical issues in tissue engineering. Ann N Acad Sci 961: 372–385

    Article  CAS  Google Scholar 

  7. Stoltz JF, Bensoussan D, Decot V, Ciree A, Netter P, Gillet P (2006) Cell and tissue engineering and clinical applications: an overview. Biomed Mater Eng 16: 3–18

    Google Scholar 

  8. Chen HC, Hu YC (2006) Bioreactors for tissue engineering. Biotechnol Lett 28: 1415–1423

    Article  CAS  PubMed  Google Scholar 

  9. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends iotechnol 22: 80–86

    Article  CAS  Google Scholar 

  10. Pei M, Solchaga LA, Seidel J, Zeng L, Vunjak-Novakovic G, Caplan AI, Freed LE (2002) Bioreactors mediate the effectiveness of tissue engineering scaffolds. FASEB J 16: 1691–1694

    Article  CAS  PubMed  Google Scholar 

  11. Pörtner R, Nagel-Heyer St, Goepfert Ch, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. J Bioeng Biosci 100: 235–245

    Article  CAS  Google Scholar 

  12. Pörtner R, Giese Ch (2007) Overview on bioreactor design, prototyping and in process controls for reproducible three dimensional tissue culture. In: Marx U, Sandig V (eds.) Drug testing in vitro. WILEY-VCH Verlag, Weinheim

    Google Scholar 

  13. Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Acad Sci 961: 210–215

    Article  CAS  Google Scholar 

  14. Risbud M V, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20: 351–356

    Article  CAS  PubMed  Google Scholar 

  15. Petersen JP, Rücker A, von Stechow D, Adamietz P, Pörtner R, Rueger JM, Meenen NM (2003) Present and future therapies of articular cartilage defects. Eur J Trauma 1: 1–10

    Article  Google Scholar 

  16. Meenen NM, Ueblacker P, Pörtner R, Göpfert Ch, Nagel-Heyer St, Petersen JP, Adamietz P (2005) Knorpel aus dem Labor-eine Sackgasse? Arthroskopie 18: 245–252

    Article  Google Scholar 

  17. Kuo CK, Li WJ, Mauck RL, Tuan RS (2006) Cartilage tissue engineering: its potential and uses. Curr Opin Rheumatol 18(1): 64–73

    Article  PubMed  Google Scholar 

  18. Glowacki J (2000) In vitro engineering of cartilage. J Rehabil Res Dev 37: 171–177

    CAS  PubMed  Google Scholar 

  19. Kim HW, Han CD (2000) An overview of cartilage tissue engineering. Yonsei Med J 41: 66–773

    Google Scholar 

  20. Lima EG, Mauck RL, Shelley HH, Park S, Ng KW, Ateshian GA, Hung CT (2004) Functional issue engineering of chondral and osteochondral constructs. Biorheology 41: 577–590

    PubMed  Google Scholar 

  21. Nesic D, Whiteside R, Brittberg M, Wendt D, Martin I, Mainil-Varlet P (2006) Cartilage tissue engineering for degenerative joint disease. Adv Drug Deliv Rev 58: 300–322

    Article  CAS  PubMed  Google Scholar 

  22. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2007) Osteochondral tissue engineering. J Biomech 40: 750–765

    Article  PubMed  Google Scholar 

  23. Obradovic B, Martin I, Freed LE, Vunjak-Novakovic G (2001) Bioreactor studies of natural and tissue engineered cartilage. Ortop Traumatol Rehabil 3: 181–189

    CAS  PubMed  Google Scholar 

  24. Darling EM, Athanasiou KA (2003) Articular cartilage bioreactors and bioprocesses. Tissue Eng 9: 9–26 (Erratum in: Tissue Eng 2003 9: 565)

    Article  CAS  PubMed  Google Scholar 

  25. Chen HC, Lee HP, Sung ML, Liao CJ, Hu YC (2004) A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Biotechnol Prog 20: 1802–1809

    Article  CAS  PubMed  Google Scholar 

  26. Lee DA, Martin I (2004) Bioreactor culture techniques for cartilage-tissue engineering. Methods Mol Biol 238: 159–170

    CAS  PubMed  Google Scholar 

  27. Nagel-Heyer St, Goepfert Ch, Adamietz P, Meenen NM, Petersen JP, Pörtner R (2005) Flow- chamber bioreactor culture for generation of three-dimensional cartilage-carrier-constructs. Bioprocess Biosyst Eng 27: 273–280

    Article  CAS  PubMed  Google Scholar 

  28. Vunjak-Novakovic G, Meinel L, Altman G, Kaplan D (2005) Bioreactor cultivation of osteo- chondral grafts. Orthod Craniofac Res 8: 209–218

    Article  CAS  PubMed  Google Scholar 

  29. Wendt D, Jakob M, Martin I (2005) Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Biosci Bioeng 100: 489–494

    Article  CAS  PubMed  Google Scholar 

  30. Akmal M, Anand A, Anand B, Wiseman M, Goodship AE, Bentley G (2006) The culture of articular chondrocytes in hydrogel constructs within a bioreactor enhances cell proliferation and matrix synthesis. J Bone Joint Surg Br 88: 544–553

    Article  CAS  PubMed  Google Scholar 

  31. Bilgen B, Sucosky P, Neitzel GP, Barabino GA (2006) Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Biotechnol Bioeng 95: 1009–1022

    Article  CAS  PubMed  Google Scholar 

  32. Freed LE, Guilak F, Guo XE, Gray ML, Tranquillo R, Holmes JW, Radisic M, Sefton MV, Kaplan D, Vunjak-Novakovic G (2006) Advanced tools for tissue engineering: scaffolds, bioreactors, and signaling. Tissue Eng 12: 3285–3305

    Article  CAS  PubMed  Google Scholar 

  33. Cooper JA Jr, Li WJ, Bailey LO, Hudson SD, Lin-Gibson S, Anseth KS, Tuan RS, Washburn NR (2007) Encapsulated chondrocyte response in a pulsatile flow bioreactor. Acta Biomater 3: 13–21

    Article  CAS  PubMed  Google Scholar 

  34. Schulz RM, Bader A (2007) Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur Biophys J 36: 539–568

    Article  CAS  PubMed  Google Scholar 

  35. Yoshioka T, Mishima H, Ohyabu Y, Sakai S, Akaogi H, Ishii T, Kojima H, Tanaka J, Ochiai N, Uemura T (2007) Repair of large osteochondral defects with allogeneic cartilaginous aggregates formed from bone marrow-derived cells using RWV bioreactor. J Orthop Res 25: 1291–1298

    Article  PubMed  Google Scholar 

  36. Nagel-Heyer St, Goepfert Ch, Morlock MM, Pörtner R (2005) Relationship between grossc morphological and biochemical data of tissue engineered cartilage-carrier-constructs. Biotechnol Lett 27: 187–192

    Article  CAS  PubMed  Google Scholar 

  37. Nagel-Heyer St (2004) Engineering aspects for generation of three dimensional cartilage- carrier-constructs. Books on Demand GmbH, Norderstedt, Germany, ISBN 3-8334-1478-2

    Google Scholar 

  38. Nagel-Heyer St, Goepfert Ch, Adamietz P, Meenen NM, Pörtner R (2006) Cultivation of three-dimensional cartilage-carrier-constructs under reduced oxygen tension. J Biotechnol 121: 486–497

    Article  CAS  PubMed  Google Scholar 

  39. Petersen JP, Uebelacker P, Goepfert Ch, Adamietz P, Stork A, Rueger JM, Pörtner R, Amling M, Meenen NM. Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mat Sci Mater Med, DOI: 10.1007/ s10856–007–3291–3

    Google Scholar 

  40. Pei M, Seidel J, Vunjak-Novakovic G, Freed LE (2002) Growth factors for sequential cellular de- and re-differentiation in tissue engineering. Biochem Biophys Res Commun 294: 149–154

    Article  CAS  PubMed  Google Scholar 

  41. Jakob M, Demarteau O, Schäfer D, Hintermann B, Dick W, Heberer M, Martin I (2001) Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhances chondrogenesis and cartilaginous tissue formation. J Cell Biochem 81: 368–377

    Article  CAS  PubMed  Google Scholar 

  42. Lundgren B, Blüml G (1998) Microcarriers in cell culture production. In: Subramanian G (ed.) Bioseparation and bioprocessing — a handbook. WILEY-VCH, Weinheim

    Google Scholar 

  43. Butler M (2004) Animal cell culture and technology — the basics. Oxford University Press,Oxford

    Book  Google Scholar 

  44. Malda J, Frondoza CG (2006) Microcarriers in the engineering of cartilage and bone. Trends Biotechnol 24: 299–304

    Article  CAS  PubMed  Google Scholar 

  45. Malda J, van den Brink P, Meeuwse P, Grojec M, Martens DE, Tramper J, Riesle J, van Blitterswijk CA (2004) Effect of oxygen tension on adult articular chondrocytes in microcar-rier bioreactor culture. Tissue Eng 10: 987–994

    Article  CAS  PubMed  Google Scholar 

  46. Nagel-Heyer St, Leist Ch, Lünse S, Goepfert Ch, Pörtner R (2005) From biopsy to cartilagecarrier constructs by using microcarrier cultures as sub-process. In: Proceedings of 19th ESACT meeting, Harrogate, UK, p. 139

    Google Scholar 

  47. Goepfert Ch, Lutz V, Lünse S, Kittel S, Wiegandt K, Pörtner R, Kammal M, Püschel K (2007) Expansion of human articular chondrocytes on microcarriers enhances the production of cartilage specific matrix components. 20th Meeting of the European Society for Animal Cell Technology, 17–20th June 2007, Dresden

    Google Scholar 

  48. Kreklau B, Sittinger M, Mensing M, Voigt C, Berger G, Burmester G, Rahmanzadeh R, Gross U (1999) Tissue engineering of biphasic joint cartilage implants. Biomaterials 20: 1743–1749

    Article  CAS  PubMed  Google Scholar 

  49. Suominen E, Vedel A, Knagasniemi I, Uusipaikka E, Yli-Urpo A (1996) Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatite, and hydroxyapatite-glass composite. J Biomed Mater Res 32: 143–551

    Article  Google Scholar 

  50. Asselin A, Hattar S, Oboef M, Greenspan D, Berdal A, Sautier J (2004). The modulation of tissue-specific gene expression in rat nasal chondrocyte cultures by bioactive glasses. Biomaterials 25: 2621–5630

    Article  CAS  Google Scholar 

  51. Van Susante J, Buma P, Schuman L, Homminga G, Van den Berg W, Veth R (1999) Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects on femoral articular cartilage: an experimental study in the goat. Biomaterials 20: 1167–1175

    Article  PubMed  Google Scholar 

  52. Janssen, R.; S. Nagel-Heyer; Ch. Goepfert; R. Pörtner; D. Toykan; O. Krummhauer; M.M. Morlock; P. Adamietz; N.M. Meenen; W.M. Kriven; D.-K. Kim; A. Tampieri, G. Celotti (2004) Calcium phosphate ceramics as substrate for cartilage cultivation. Ceramic Eng Sci Proc 25(4): 523–528

    Article  CAS  Google Scholar 

  53. Chang CH, Lin FH, Lin CC, Chou CH, Liu HC (2004) Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor. J Biomed Mater Res B Appl Biomater 71(2): 313–21

    Article  PubMed  CAS  Google Scholar 

  54. Tanaka T, Komaki H, Chazono M, Fuji K (2005) Use of a biphasic graft constructed withchondrocytes overlying a -tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng 11: 331–339

    Article  CAS  PubMed  Google Scholar 

  55. Kandel RA, Grynpas M, Pilliar R, Lee J, Wang J, Waldman S, Zalzal P, Hurtig M (2006) Repair of osteochondral defects with biphasic cartilage-calcium polyphosphate constructs in a sheep model. Biomaterials (22): 4120–4131

    Article  CAS  PubMed  Google Scholar 

  56. Waldman SD, Grypnas M, Pilliar R. Kandel R (2002) Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro. J Biomed Mater Res 62: 323–330

    Article  CAS  PubMed  Google Scholar 

  57. Waldman SD, Grypnas M, Pilliar R, Kandel R (2003) The use of specific chondrocyte populations to modulate the properties of tissue-engineered cartilage. J Orthop Res 21: 132–138

    Article  PubMed  Google Scholar 

  58. Malda J, Martens DE, Tramper J, van Blitterswijk CA, Riesle J (2003) Cartilage tissue engineering: controversy in the effect of oxygen. Crit Rev Biotechnol 23: 175–194

    Article  CAS  PubMed  Google Scholar 

  59. O'Driscoll SW, Fitzsimmons JS, Commisso CN (1977) Role of oxygen tension during cartilage formation by periosteum. J Orthop Res 15: 682–687

    Article  Google Scholar 

  60. Domm C, Schünke M, Christesen K, Kurz B (2002) Redifferentiation of dedifferentiatedbovine articular chondrocytes in alginate culture under low oxygen tension. Osteoarthr Cartil 10: 13–22

    Article  CAS  Google Scholar 

  61. Malda J, Rouwkema J, Martens DE, Le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J (2004) Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modelling. Biotechnol Bioeng 86: 9–18

    Article  CAS  PubMed  Google Scholar 

  62. Obradovic B, Carrier RL, Vunjak-Novakovic G, Freed LE (1999) Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol Bioeng 63: 197–205

    Article  CAS  PubMed  Google Scholar 

  63. Ysart GE, Mason RM (1994) Responses of articular cartilage explant cultures to different oxygen tensions. Biochim Biophys Acta 1221: 15–20

    Article  CAS  PubMed  Google Scholar 

  64. Nehring D, Adamietz P, Meenen NM, Pörtner R (1999) Perfusion cultures and modelling of oxygen uptake with three-dimensional chondrocyte pellets. Biotechnol Technol 13: 701–706

    Article  CAS  Google Scholar 

  65. Wernike E, Li Z, Alini M, Grad S (2008) Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res 331: 473–483

    Article  CAS  PubMed  Google Scholar 

  66. Wiegandt K, Goepfert Ch, Pörtner R (2007) Improving in vitro generated cartilage-carrier- constructs by optimizing growth factor combination. Open Biomed Eng J 1: 85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Blunk T, Sieminski AL, Gooch KJ, Courter DL, Hollander AP, Nahir AM, Langer R, Vunjak-Novakovic G, Freed LE (2002) Differential effects of growth factors on tissue-engineered cartilage. Tissue Eng 8: 73–84

    Article  CAS  PubMed  Google Scholar 

  68. Benz K, Breit S, Lukoschek M, Mau H, Richter W (2002) Molecular analysis of expansion, differentiation, and growth factor treatment of human chondrocytes identifies differentiation markers and growth-related genes. Biochem Biophys Res Commun 293: 284–292

    Article  CAS  PubMed  Google Scholar 

  69. Francioli SE, Martin I, Sie CP, Hagg R, Tommasini R, Candrian C, Heberer M, Barbero A (2007) Growth factors for clinical-scale expansion of human articular chondrocytes: relevance for automated bioreactor systems. Tissue Eng 13: 1227–1234

    Article  CAS  PubMed  Google Scholar 

  70. Guerne PA, Sublet A, Lotz M (1994) Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, subcultured chondrocytes, and fibroblasts. J Cell Physiol 158: 476–484

    Article  CAS  PubMed  Google Scholar 

  71. Yaeger PC, Masi T, Buck de Ortiz JL, Binette F, Tubo R, Mc Pherson JM (1997) Synergisticaction of transforming growth factor-βd insulin like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res 237: 318–325

    Article  CAS  PubMed  Google Scholar 

  72. Van Osch GJ, Van den Berg WB, Hunziker EB, Häuselmann HJ (1998) Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthr Cartil 6: 187–195

    Article  Google Scholar 

  73. Tsukazaki T, Usa T, Matsumoto T, Enomoto H, Ohtsuru A, Namba H, Iwasaki K, Yamashita S (1994) Effect of transforming growth factor-β on the insulin-like growth factor-I autocrine/ paracrine axis in cultured rat articular chondrocytes. Exp Cell Res 215: 9–16

    Article  CAS  PubMed  Google Scholar 

  74. Gooch KJ, Blunk T, Courter DL, Sieminski AL, Bursac PM, Vunjak-Novakovic G, Freed LE (2001) IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem Biophys Res Commun 286: 909–915

    Article  CAS  PubMed  Google Scholar 

  75. Mauck RL, Nicoll SB, Seyhan SL, Athesian G, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9: 597–611

    Article  CAS  PubMed  Google Scholar 

  76. Malda J, van Blitterswijk CA, van Geffen M, Martens DE, Tramper J, Riesle J (2004) Low oxygen tension stimulates the redifferentiation of dedifferentiated adult human nasal chondrocytes. Osteoarthr Cartil 12: 306–313

    Article  CAS  Google Scholar 

  77. Heyland J, Wiegandt K, Goepfert Ch, Nagel-Heyer St., Ilinich E, Schumacher U, Pörtner R (2006) Redifferentiation of chondrocytes and cartilage formation under intermittent hydrostatic pressure. Biotechnol Lett 28: 1641–1648

    Article  CAS  PubMed  Google Scholar 

  78. Hussein MA, Esterl S, Pörtner R, Wiegandt K, Becker T (2008) On the Lattice Boltzmann method simulation of a two phase flow bioreactor for artificially grown cartilage cells. Bioscience (in press )

    Google Scholar 

  79. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. FASEB J 16: 270–272

    Article  CAS  PubMed  Google Scholar 

  80. Butler DL, Goldstein SA, Guilak F (2000) Functional tissue engineering: the role of biome-chanics. J Biomech Eng 122: 570–575

    Article  CAS  PubMed  Google Scholar 

  81. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122: 252–260

    Article  CAS  PubMed  Google Scholar 

  82. Hansen U, Schunke M, Domm C, Ioannidis N, Hassenpflug J, Gehrke T, Kurz B (2001) Combination of reduced oxygen tension and intermittent hydrostatic pressure: a useful tool in articular cartilage tissue engineering. J Biomech 7: 941–949

    Article  Google Scholar 

  83. Weightman B, Isherwood DP, Swanson SA (1979) The fracture of ultrahigh molecular weight polyethylene in the human body. J Biomed Mater Res 4: 669–672

    Article  Google Scholar 

  84. Connelly JT, Vanderploeg EJ, Levenston ME (2004) The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Biorheology 41: 377–387

    CAS  PubMed  Google Scholar 

  85. Gemmiti CV, Guldberg RE (2006) Fluid flow increases type II collagen deposition and tensile mechanical properties in bioreactor-grown tissue-engineered cartilage. Tissue Eng 12: 469–479

    Article  CAS  PubMed  Google Scholar 

  86. Gokorsch S, Nehring D, Grottke C, Czermak P (2004) Hydrodynamic stimulation and long term cultivation of nucleus pulposus cells: a new bioreactor system to induce extracellular matrix synthesis by nucleus pulposus cells dependent on intermittent hydrostatic pressure. Int J Artif Organs 27: 962–970

    Article  CAS  PubMed  Google Scholar 

  87. Gokorsch S, Weber C, Wedler T, Czermak P (2005) A stimulation unit for the application of mechanical strain on tissue engineered anulus fibrosus cells: a new system to induce extracellular matrix synthesis by anulus fibrosus cells dependent on cyclic mechanical strain. Int J Artif Organs 28: 1242–1250

    Article  CAS  PubMed  Google Scholar 

  88. Hsu SH, Kuo CC, Whu SW, Lin CH, Tsai CL (2006) The effect of ultrasound stimulation versus bioreactors on neocartilage formation in tissue engineering scaffolds seeded with human chondrocytes in vitro. Biomol Eng 23: 259–264

    Article  CAS  PubMed  Google Scholar 

  89. Lappa M (2003) Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol Bioeng 84: 518–532

    Article  CAS  PubMed  Google Scholar 

  90. Lee DA, Knight MM (2004) Mechanical loading of chondrocytes embedded in 3D constructs: in vitro methods for assessment of morphological and metabolic response to compressive strain. Methods Mol Med 100: 307–324

    CAS  PubMed  Google Scholar 

  91. Li KW, Klein TJ, Chawla K, Nugent GE, Bae WC, Sah RL (2004) In vitro physical stimulation of tissue-engineered and native cartilage. Methods Mol Med 100: 325–352

    PubMed  Google Scholar 

  92. Li Z, Yao S, Alini M, Grad S (2007) Different response of articular chondrocyte subpopulations to surface motion. Osteoarthr Cartil 15: 1034–1041

    Article  CAS  Google Scholar 

  93. Mauck RL, Byers BA, Yuan X, Tuan RS (2007) Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech Model Mechanobiol 6: 113–125

    Article  CAS  PubMed  Google Scholar 

  94. Meyer U, Büchter A, Nazer N, Wiesmann HP (2006) Design and performance of a bioreactor system for mechanically promoted three-dimensional tissue engineering. Br J Oral Maxillofac Surg 44: 134–140

    Article  CAS  PubMed  Google Scholar 

  95. Raimondi MT, Boschetti F, Falcone L, Migliavacca F, Remuzzi A, Dubini G (2004) The effect of media perfusion on three-dimensional cultures of human chondrocytes: integration of experimental and computational approaches. Biorheology 41: 401–410

    CAS  PubMed  Google Scholar 

  96. Raimondi MT, Moretti M, Cioffi M, Giordano C, Boschetti F, Laganà K, Pietrabissa R (2006) The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion. Biorheology 43: 215–222

    PubMed  Google Scholar 

  97. Schmidt O, Mizrahi J, Elisseeff J, Seliktar D (2006) Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Biotechnol Bioeng 95: 1061–1069

    Article  CAS  PubMed  Google Scholar 

  98. Seidel JO, Pei M, Gray ML, Langer R, Freed LE, Vunjak-Novakovic G (2004) Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Biorheology 41: 445–458

    CAS  PubMed  Google Scholar 

  99. Stoddart MJ, Ettinger L, Häuselmann HJ (2006) Enhanced matrix synthesis in de novo, scaffold free cartilage-like tissue subjected to compression and shear. Biotechnol Bioeng 95: 1043–1051

    Article  CAS  PubMed  Google Scholar 

  100. Terraciano V, Hwang N, Moroni L, Park HB, Zhang Z, Mizrahi J, Seliktar D, Elisseeff J (2007) Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25: 2730–2738

    Article  CAS  PubMed  Google Scholar 

  101. Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA (2007) Multi-axial mechanical stimulation of tissue engineered cartilage: review. Eur Cell Mater 13: 66–73 (discussion 73–74)

    Article  CAS  PubMed  Google Scholar 

  102. Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA (2006) A single application of cyclic loading can accelerate matrix deposition and enhance the properties of tissue-engineered cartilage. Osteoarthr Cartil 14: 323–330

    Article  CAS  Google Scholar 

  103. Waldman SD, Spiteri CG, Grynpas MD, Pilliar RM, Kandel RA (2004) Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage. Tissue Eng 10: 1323–1331

    Article  CAS  PubMed  Google Scholar 

  104. Wenger R, Hans MG, Welter JF, Solchaga LA, Sheu YR, Malemud CJ (2006) Hydrostatic pressure increases apoptosis in cartilage-constructs produced from human osteoarthritic chondrocytes. Front Biosci 11: 1690–1695

    Article  CAS  PubMed  Google Scholar 

  105. Begley CM, Kleis SJ (2000) The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol Bioeng 70: 32–40

    Article  CAS  PubMed  Google Scholar 

  106. Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci U S A 94: 13885–13890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35: 903–909

    Article  CAS  PubMed  Google Scholar 

  108. Demarteau O, Wendt D, Graccini A, Jakob M, Schäfer D, Heber M, Martin I (2003) Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 310: 580

    Article  CAS  PubMed  Google Scholar 

  109. Ilinich, E (2007) Kultivierung und Analyse von Knorpel-Träger-Konstrukten in einem neuartigen Bioreaktor. Technisch wissenschaftliche Schriftenreihe, Bd. 5, ISBN 978-3-930400-98-0

    Google Scholar 

  110. Sengers BG, Oomens CWJ, Baaijens FPT (2004) An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering. J Biomech Eng 126: 83–91

    Article  Google Scholar 

  111. Williams KA, Saini S, Wick TM (2002) Computational fluid dynamics modelling of steady- state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol Prog 18: 951–963

    Article  CAS  PubMed  Google Scholar 

  112. Kallemeyn NA, Grosland NM, Pedersen DR, Martin JA, Brown TD (2006) Loading and boundary condition influences in a poroelastic finite element model of cartilage stresses in a triaxial compression bioreactor. Iowa Orthop J 26: 5–16

    PubMed  PubMed Central  Google Scholar 

  113. Hall AC, Urban JPG, Gehl KA (1991) The effects of hydrostatic pressure on matrix synthesis in articular cartilage. J Orthop Res 9: 1–10

    Article  CAS  PubMed  Google Scholar 

  114. Parkkinen JJ, Ikonen J, Lammi MJ, Laakkonen J, Tammi M, Helminen HJ (1993) Effects of hydrostatic pressure on protoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300: 458–465

    Article  CAS  PubMed  Google Scholar 

  115. Lammi MJ, Inkinen R, Parkkinen JJ, Häkkinen T, Jortikka M, Nelimarkka LO et al. (1994) Expression of reduced amounts of structurally altered aggrecan in articular cartilage chondrocytes exposed to high hydrostatic pressure. Biochem J 304: 723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR et al. (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14: 53–60

    Article  CAS  PubMed  Google Scholar 

  117. Carver SE, Heath C (1999) Increasing extracellular matrix production in regenerative cartilage with intermittent physiological pressure. Biotechnol Bioeng 62: 166–174

    Article  CAS  PubMed  Google Scholar 

  118. Domm C, Fay J, Schünke M, Kurz B (2000) Die Redifferenzierung von dedifferenzierten Gelenkknorpelzellen in Alginatkultur. Orthopäde 29: 91–99

    CAS  PubMed  Google Scholar 

  119. Smith RL, Lin J, Trinidade MCD, Shida J, Kajiyama BS, Vu T et al. (2000) Time-dependent effects of intermittent hydrostatic pressure on articular chondrocytes type II collagen and aggrecan mRNA expression. JRRD 37(2)

    Google Scholar 

  120. Toyoda T, Seedhom BB, Yoa JQ, Kirkham J, Brookes S, Bonass WA (2003) Hydrostatic pressure modulates proteoglycans metabolism in chondrocytes seeded in agarose. Arthritis Rheum 48: 2865–2872

    Article  CAS  PubMed  Google Scholar 

  121. Scherer K, Schünke M, Sellckau R, Hassenpflug J, Kurz B (2004) The influence of oxygen and hydrostatic pressure on articular chondrocytes and adherent bone marrow cells in vitro. Biorheology 41: 323–333

    CAS  PubMed  Google Scholar 

  122. Smith RL, Carter DR, Schurman DJ (2004) Pressure and shear differentially alter human articular chondrocytes metabolism. Clin Orthop Rel Res 427: 89–95

    Google Scholar 

  123. Elder SH, Sanders SW, McCulley WR, Marr ML, Shim JW, Hasty KA (2006) Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture. J Orthop Res 24: 740–747

    Article  CAS  PubMed  Google Scholar 

  124. Mizuno S (2005) A novel method for assessing effects of hydrostatic fluid pressure on intra-cellular calcium: a study with bovine articular chondrocytes. Am J Physiol Cell Physiol 288: 329–337

    Article  CAS  Google Scholar 

  125. Hu JC, Athanasiou KA (2006) The effects of intermittent hydrostatic pressure on self- assembled articular cartilage constructs. Tissue Eng 12: 1337–1344

    Article  CAS  PubMed  Google Scholar 

  126. Gavenis K, Kremer A, von Walter M, Hollander DA, Schneider U, Schmidt-Rohlfing B(2007) Effects of cyclic hydrostatic pressure on the metabolism of human osteoarthritic chondrocytes cultivated in a collagen gel. Artif Organs 31: 91–98

    Article  CAS  PubMed  Google Scholar 

  127. Kawanishi M, Oura A, Furukawa K, Fukubayashi T, Nakamura K, Tateishi T, Ushida T (2007) Redifferentiation of dedifferentiated bovine articular chondrocytes enhanced by cyclic hydrostatic pressure under a gas-controlled system. Tissue Eng 13: 957–964

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pörtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pörtner, R. et al. (2009). Technical Strategies to Improve Tissue Engineering of Cartilage-Carrier-Constructs. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2008_4

Download citation

Publish with us

Policies and ethics