Skip to main content

On Powers as Sums of Two Cubes

  • Conference paper
Algorithmic Number Theory (ANTS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1838))

Included in the following conference series:

Abstract

In a paper of Kraus, it is proved that x 3 + y 3 = z p for p ≥17 has only trivial primitive solutions, provided that p satisfies a relatively mild and easily tested condition. In this article we prove that the primitive solutions of x 3 + y 3 = z p with p = 4,5,7,11,13, correspond to rational points on hyperelliptic curves with Jacobians of relatively small rank. Consequently, Chabauty methods may be applied to try to find all rational points. We do this for p = 4,5, thus proving that x 3 + y 3 = z 4 and x 3 + y 3 = z 5 have only trivial primitive solutions. In the process we meet a Jacobian of a curve that has more 6-torsion at any prime of good reduction than it has globally. Furthermore, some pointers are given to computational aids for applying Chabauty methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: PARI-GP. Avaliable, from ftp://megrez.math.u-bordeaux.fr/pub/pari

  2. Beukers, F.: The Diophantine equation Ax p + By q = Cz r. Duke Math. J. 91(1), 61–88 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruin, N.: Chabauty Methods and Covering Techniques applied to Generalised Fermat Equations. PhD thesis, Universiteit Leiden (1999)

    Google Scholar 

  4. Bruin, N.: The diophantine equations x 2 ± y 4 = ±z 6 and x 2 + y 8 = z 3. Compositio Math. 118, 305–321 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. LMS–LNS 230. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  6. Chabauty Sur, C.: les points rationnels des variétés algébriques dont l’irrégularité est supvrieure à la dimension. C. R. Acad. Sci. Paris 212, 1022–1024 (1941)

    MathSciNet  Google Scholar 

  7. Daberkow, M., Fieker, C., Klüners, J., Pohst, M., Roegner, K., Schörnig, M., Wildanger, K.: KANT V4. J. Symbolic Comput. 24(3-4), 267–283 (1997), Available from ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/Kash

    Article  MATH  MathSciNet  Google Scholar 

  8. Darmon, H., Granville, A.: On the equations zm = F( x, y) and Axp + Byq = Czrr. Bull. London Math. Soc. 27(6), 513–543 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s last theorem. J. Reine Angew. Math. 490, 81–100 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Flynn, E.V.: A flexible method for applying chabauty’s theorem. Compositio Math-ematica 105, 79–94 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kraus, A.: private communication

    Google Scholar 

  12. Kraus, A.: Sur l’équation a 3 + b 3 = c p cp. Experiment. Math. 7(1), 1–13 (1998)

    MATH  MathSciNet  Google Scholar 

  13. Daniel Mauldin, R.: A generalization of Fermat’s last theorem: the Beal conjecture and prize problem. Notices Amer. Math. Soc. 44(11), 1436–1437 (1997)

    MATH  MathSciNet  Google Scholar 

  14. Odlyzko, A.M.: Tables of discriminant bounds (1976), available at, http://www.research.att.com/~amo/unpublished/index.html

  15. Odlyzko, A.M.: Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results. Sém. Théor. Nombres Bordeaux (2) 2(1), 119–141 (1990)

    MATH  MathSciNet  Google Scholar 

  16. Poonen, B., Schaefer, E.F.: Explicit descent for jacobians of cyclic covers of the projective line. J. reine angew. Math. 488, 141–188 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Schaefer, E.F.: Computing a Selmer group of a Jacobian using functions on the curve. Math. Ann. 310(3), 447–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM 106. Springer, Heidelberg (1986)

    Google Scholar 

  19. Stoll, M.: On the arithmetic of the curves y 2 = x l + A and their Jacobians. J. Reine Angew. Math. 501, 171–189 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Stoll, M.: On the arithmetic of the curves y 2 = x l + A, II (1998), available from http://www.math.uiuc.edu/Algebraic-Number-Theory

  21. Stoll, M.: Implementing 2-descent for jacobians of hyperelliptic curves (1999), available from http://www.math.uiuc.edu/Algebraic-Number-Theory

  22. Stoll, M.: On the height constant for curves of genus two. Acta Arith. 90(2), 183–201 (1999)

    MATH  MathSciNet  Google Scholar 

  23. Tijdeman, R.: Diophantine equations and Diophantine approximations. In: Number theory and applications (Banff, AB, 1988), pp. 215–243. Kluwer Acad. Publ., Dordrecht (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruin, N. (2000). On Powers as Sums of Two Cubes. In: Bosma, W. (eds) Algorithmic Number Theory. ANTS 2000. Lecture Notes in Computer Science, vol 1838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10722028_9

Download citation

  • DOI: https://doi.org/10.1007/10722028_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67695-9

  • Online ISBN: 978-3-540-44994-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics