Skip to main content

Nonlinear Dynamics of Bloch Wave Packets in Honeycomb Lattices

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

Nonlinear waves in deformed optical honeycomb lattices are investigated. Discrete couple mode equations are used to find higher order continuous nonlinear Dirac systems which are employed to describe key underlying phenomena. For weak deformation and nonlinearity the wave propagation is circular–ellliptical. At strong nonlinearity the diffraction pattern becomes triangular in structure which is traced to appropriate nonequal energy propagation in momentum space. At suitably large deformation the dispersion structure can have nearby Dirac points or small gaps. The effective dynamics of the wave packets is described by two maximally balanced nonlocal nonlinear Schrödinger type equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  ADS  Google Scholar 

  3. N.M.R. Peres, K.S. Novoselov, A.H. Castro Neto, F. Guinea, A.K. Geim, The electronic properties of graphene. Rev. Modern Phys. 81, 109 (2009)

    Google Scholar 

  4. O. Peleg, G. Bartal, B. Freedman, O. Manela, M. Segev, D.N. Christodoulides, Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007)

    Article  ADS  Google Scholar 

  5. O. Morsch, M. Oberthaler, Dynamics of bose-einstein condensates in optical lattices. Rev. Mod. Phys. 1, 179–215 (2006)

    Article  ADS  Google Scholar 

  6. S.L. Zhu, B. Wang, L.M Duan, Simulation and detection of Dirac fermions with cold atoms in an optical lattice. Phys. Rev. Lett. 98, 260402 (2007)

    Article  ADS  Google Scholar 

  7. Y.S. Kivshar, P. Agrawal Govind, Optical Solitons: From Fibers to Photonic Crystals (Academic press, San Diego, 2003)

    Google Scholar 

  8. M.I. Carvalho, S.R. Singh, D.N. Christodoulides, Vector interactions of steady-state planar solitons in biased photorefractive media. Opt. Lett. 20, 2177–2179 (1995)

    Article  ADS  Google Scholar 

  9. M. Segev, N.K. Efremidis, J.W. Fleisher, T. Carmon, D.N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays. Phys. Rev. Lett. 90, 023902 (2003)

    Article  ADS  Google Scholar 

  10. N.K Efremidis, J.W. Fleisher, M. Segev, D.N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)

    Article  ADS  Google Scholar 

  11. D.N. Christodoulides, R.J. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides. Opt. Lett. 13, 794–796 (1988)

    Article  ADS  Google Scholar 

  12. P.G. Kevrekidis, B.A. Malomed, Y.B. Gaididei, Solitons in triangular and honeycomb dynamical lattices with the cubic nonlinearity. Phys. Rev. E 66, 016609 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. M.J. Ablowitz, Y. Zhu, Unified description of the dynamics of wave envelopes in two-dimensional simple periodic lattices. Stud. Appl. Math. (to appear)

    Google Scholar 

  14. M. Ablowitz, S. Nixon, Y. Zhu, Conical diffraction in honeycomb lattices. Phys. Rev. A 79, 053830 (2009)

    Article  ADS  Google Scholar 

  15. M.J. Ablowitz, Y. Zhu, Evolution of bloch-mode envelopes in two-dimensional generalized honeycomb lattices. Phys. Rev. A 82, 013840 (2010)

    Article  ADS  Google Scholar 

  16. L.H. Haddad, L.C. Carr, The nonlinear Dirac equation in bose-einstein condensates: foundation and symmetries. Physica D 238, 1413–1421 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. A.B. Aceves, B. Costantini, C. De Angelis, Two-dimensional gap solitons in a nonlinear periodic slab waveguide. J. Opt. Soc. Am. B 12, 1475–1479 (1995)

    Article  ADS  Google Scholar 

  18. J.K. Yang, I. Makasyuk, A. Bezryadina, Z. Chen, Dipole solitons in optically induced two-dimensional photonic lattices. Opt. Lett. 29, 1662–1664 (2004)

    Article  ADS  Google Scholar 

  19. D.N. Neshev, T.J. Alexander, E.A. Ostrovskaya, Y.S. Kivshar, I. Martin, H. Makasyuk, Z.G. Chen, Observation of discrete vortex solitons in optically induced photonic lattices. Phys. Rev. Lett. 92, 123903 (2004)

    Article  ADS  Google Scholar 

  20. X. Wang, Z. Chen, J. Wang, J. Yang, Observation of in-band lattice solitons. Phys. Rev. Lett. 99, 243901 (2007)

    Article  ADS  Google Scholar 

  21. R. Driben, I.M. Merhasin, B.V. Gisin, B.A. Malomed, Finite-band solitons in the kronig-penney model with the cubic-quintic nonlinearity. Phys. Rev. E 71, 016613 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. E.A. Ostrovskaya, Y.S. Kivshar, Photonic crystals for matter waves: Bose-einstein condensates in optical lattices. Opt. Exp. 12, 19–29 (2004)

    Article  ADS  Google Scholar 

  23. H. Sakaguchi, B.A. Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps. J. Phys. B: At. Mol. Opt. Phys. 37, 2225–2239 (2004)

    Article  ADS  Google Scholar 

  24. F.W. Wise, Y.-F. Chen, K. Beckwitt, B.A. Malomed, Criteria for the experimental observation of multidimensional optical solitons in saturable media. Phys. Rev. E 70, 046610 (2004)

    Article  ADS  Google Scholar 

  25. Z. Shi, J. Yang, Solitary waves bifurcated from bloch-band edges in two-dimesional periodic media. Phys. Rev. E 75, 056602 (2007)

    Article  ADS  Google Scholar 

  26. B. Ilan, M.I. Weinstein, Band-edge solitons, nonlinear schrödinger/gross-pitaevskii equations and effective media. SIAM Multiscale Model. Simul. 8, 1055–1101 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  27. M.J. Ablowitz, B. Ilan, E. Schonbrun, R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures. Phys. Rev. E 74, 035601(R) (2006)

    Google Scholar 

  28. B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D.N. Christodoulides, J.W. Fleischer, Wave and defect dynamics in nonlinear photonic quasicrystals. Nature 440, 1166–1169 (2006)

    Article  ADS  Google Scholar 

  29. H. Sakaguchi, B.A. Malomed, Gap solitons in quasiperiodic optical lattices. Phys. Rev. E 74, 026601 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. P.R Wallace, The band theory of graphite. Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  31. O. Bahat-Treidel, O. Peleg, M. Segev, Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33, 2251–2253 (2008)

    Article  ADS  Google Scholar 

  32. M.J. Ablowitz, Y. Zhu, Nonlinear diffraction in photonic graphene. Opt. Lett. 36, 3762–3764 (2011)

    Article  ADS  Google Scholar 

  33. F.D.M. Haldane, S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008)

    Article  ADS  Google Scholar 

  34. S. Raghu, F.D.M. Haldane, Analogs of quantum hall effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008)

    Article  ADS  Google Scholar 

  35. M.J. Ablowitz, Y. Zhu, Nonlinear waves in shallow honeycomb lattices. SIAM J. Appl. Math. 72, 240–260 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. O. Bahat-Triedel, A. Szameit, M. Rechtsman, M. Segev, \({\mathcal{PT}}\)-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806(R) (2011)

    Google Scholar 

  37. H. Ramezani, T. Kottos, V. Kovanis, D.N. Christodoulides, Exceptional-point dynamics in photonic honeycomb lattices with \({\mathcal{PT}}\) symmetry. Phys. Rev. A 85, 013818 (2012)

    Google Scholar 

  38. O. Bahat-Treidel, O. Peleg, M. Segev, H. Buljan, Breakdown of Dirac dynamics in honeycomb lattices due to nonlinear interactions. Phys. Rev. A 82, 013830 (2010)

    Google Scholar 

  39. O. Bahat-Treidel, O. Peleg, M. Grobman, N. Shapira, M. Segev, T. Pereg-Barnea, Klein tunneling in deformed honeycomb lattices. Phys. Rev. Lett. 104, 063901 (2010)

    Article  ADS  Google Scholar 

  40. C.L. Fefferman, M. Weinstein, Honeycomb lattice potentials and Dirac points. J. Amer. Math. Soc. 25, 1169–1220 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, New York, 2011)

    Book  Google Scholar 

  42. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Brooks Cole, Brooks, 1978)

    Google Scholar 

  43. M. Reed, B. Simon, Methods of Mathematical Physics IV: Analysisi of operators (Acdemic Press, New York, 1978)

    Google Scholar 

  44. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (Society for Industrial and Applied Mathematics, Philadelphia, 2010)

    Google Scholar 

  45. M.J. Ablowitz, C.W. Curtis, Y. Zhu, On tight binding approximations in optical lattices. Stud. Appl. Math. 129, 366–388 (2012)

    Article  MathSciNet  Google Scholar 

  46. G.L. Alfimov, P.G. Kevrekidis, V.V. Konotop, M. Salerno, Wannier functions analysis of the nonlinear schröinger equation with a periodic potential. Phys. Rev. E, 66, 046608 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  47. M.J. Ablowitz, J. Villarroel, On the Kadomtsev-Petviashili equation and associated constrints. Stud. Appl. Math. 85, 195–213 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Mark J. Ablowitz was partially supported by the U.S. Air Force Office of Scientific Research, under grant FA9550-12-0207 and by NSF under grants DMS-0905779, CHE 1125935. Yi Zhu was partially supported by the NSFC under grant 11204155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ablowitz, M.J., Zhu, Y. (2013). Nonlinear Dynamics of Bloch Wave Packets in Honeycomb Lattices. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_27

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics