Skip to main content

Spontaneous Symmetry Breaking of Pinned Modes in Nonlinear Gratings with an Embedded Pair of Defects

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

  • 1748 Accesses

Abstract

We consider spontaneous symmetry breaking (SSB) in nonlinear periodic structures with two embedded identical defects. We focus on Bragg grating (BGs) in which the defects are formed by local phase shifts. The defects are positioned relatively close to each other, so as to allow the light to couple between them. At low optical energies, i.e., in the linear regime, this system supports two symmetric eigenstates, which have identical intensity distributions but different frequencies. At higher energies, the lower-frequency state becomes unstable against symmetry-breaking perturbations, and the light gets predominantly trapped by one of the defects, leading to an asymmetric field distribution. We analyze the SSB effect for different coupling strengths and conclude that, quite naturally, the symmetry-breaking energy threshold increases with the strength. The symmetric state is stable below the SSB threshold, while the emerging asymmetric mode is stable above the threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, The discrete self-trapping equation. Physica D 16, 318–338 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  2. C. Yannouleas, U. Landman, Group theoretical analysis of symmetry breaking in two-dimensional quantum dots. Phys. Rev. B 68, 035325 (2003)

    Article  ADS  Google Scholar 

  3. E.M. Wright, G.I. Stegeman, S. Wabnitz, Solitary-wave decay and symmetry-breaking instabilities in 2-mode fibers. Phys. Rev. A 40, 4455–4466 (1989)

    Article  ADS  Google Scholar 

  4. C. Pare, M. Fłorjańczyk, Approximate model of soliton dynamics in all-optical couplers. Phys. Rev. A 41, 6287–6295 (1990)

    Article  ADS  Google Scholar 

  5. A.W. Snyder, D.J. Mitchell, L. Poladian, D.R. Rowland, Y. Chen, Physics of nonlinear fiber couplers. J. Opt. Soc. Am. B 8, 2102–2118 (1991)

    Article  ADS  Google Scholar 

  6. A.I. Maimistov, On the light-pulse propagation in nonlinear tunnel-coupled optical waveguides. Kvantovaya Elektronika 18, 758–761 (1991)

    ADS  Google Scholar 

  7. P.L. Chu, B.A. Malomed, G.D. Peng, Soliton switching and propagation in nonlinear fiber couplers: analytical results. J. Opt. Soc. Am. B 10, 1379–1385 (1993)

    Article  ADS  Google Scholar 

  8. N. Akhmediev, A. Ankiewicz, Novel soliton states and bifurcation phenomena in nonlinear fiber couplers. Phys. Rev. Lett. 70, 2395–2398 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. B.A. Malomed, I. Skinner, P.L. Chu, G.D. Peng, Symmetric and asymmetric solitons in twin-core nonlinear optical fibers. Phys. Rev. E 53, 4084–4091 (1996)

    Article  ADS  Google Scholar 

  10. W.C.K. Mak, B.A. Malomed, P.L. Chu, Soliton coupling in waveguide with quadratic nonlinearity. Phys. Rev. E 55, 6134–6140 (1997)

    Article  ADS  Google Scholar 

  11. W.C.K. Mak, B.A. Malomed, P.L. Chu, Solitary waves in coupled nonlinear waveguides with Bragg gratings. J. Opt. Soc. Am. B 15, 1685–1692 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Morandotti, U. Peschel, J.S. Aitchison, H.S. Eisenberg, Y. Silberberg, Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756–4759 (1999)

    Article  ADS  Google Scholar 

  13. G. Herring, P.G. Kevrekidis, B.A. Malomed, R. Carretero-González, D.J. Frantzeskakis, Symmetry breaking in linearly coupled dynamical lattices. Phys. Rev. E 76, 066606 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Lj. Hadžievski, G. Gligorić, A. Maluckov, B.A. Malomed, Interface solitons in one-dimensional locally coupled lattice systems. Phys. Rev. A 82, 033806 (2010)

    Article  ADS  Google Scholar 

  15. V.A. Brazhnyi, B.A. Malomed, Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites. Phys. Rev. A 83, 053844 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. V.A. Brazhnyi, B.A. Malomed, Symmetric and asymmetric localized modes in linear lattices with an embedded pair of \(\chi ^{(2)}\)-nonlinear sites. Phys. Rev. A 86, 013610 (2012)

    Google Scholar 

  17. C. Cambournac, T. Sylvestre, H. Maillotte, B. Vanderlinden, P. Kockaert, Ph. Emplit, M. Haelterman, Symmetry-breaking instability of multimode vector solitons. Phys. Rev. Lett. 89, 083901 (2002)

    Article  ADS  Google Scholar 

  18. P.G. Kevrekidis, Z. Chen, B.A. Malomed, D.J. Frantzeskakis, M.I. Weinstein, Spontaneous symmetry breaking in photonics lattices: theory and experiment. Phys. Lett. A 340, 275–280 (2005)

    Article  ADS  MATH  Google Scholar 

  19. B. Maes, M. Soljacic, J.D. Joannopoulos, P. Bienstman, R. Baets, S.P. Gorza, M. Haelterman, Switching through symmetry breaking in coupled nonlinear micro-cavities. Opt. Express 14, 10678 (2006)

    Article  ADS  Google Scholar 

  20. B. Maes, P. Bienstman, R. Baets, Symmetry breaking with coupled Fano resonances. Opt. Express 16, 3069–3076 (2008)

    Article  ADS  Google Scholar 

  21. K. Huybrechts, G. Morthier, B. Maes, Symmetry breaking in networks of nonlinear cavities. J. Opt. Soc. Am. B 27, 708–713 (2010)

    Article  ADS  Google Scholar 

  22. N. Dror, B.A. Malomed, Solitons supported by localized nonlinearities in periodic media. Phys. Rev. A 83, 033828 (2011)

    Article  ADS  Google Scholar 

  23. E. Bulgakov, K. Pichugin, A. Sadreev, Light induced Josephson like current between two coupled nonlinear cavities coupled with a symmetrically positioned photonic crystal waveguide. J. Phys. Condens. Matter 23, 065304 (2011)

    Article  ADS  Google Scholar 

  24. E. Bulgakov, K. Pichugin, A. Sadreev, Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects. Phys. Rev. B 83, 045109 (2011)

    Article  ADS  Google Scholar 

  25. E. Bulgakov, A. Sadreev, Symmetry breaking in a T-shaped photonic waveguide coupled with two identical nonlinear cavities. Phys. Rev. B 84, 155304 (2011)

    Article  ADS  Google Scholar 

  26. E.N. Bulgakov, A.F. Sadreev, Symmetry breaking in photonic crystal waveguide coupled with the dipole modes of a nonlinear optical cavity. J. Opt. Soc. Am. B 29, 2924–2928 (2012)

    Article  ADS  Google Scholar 

  27. A. Christ, O.J.F. Martin, Y. Ekinci, N.A. Gippius, S.G. Tikhodeev, Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 8, 2171–2175 (2008)

    Article  ADS  Google Scholar 

  28. A.R. Davoyan, I.V. Shadrivov, Y.S. Kivshar, Nonlinear plasmonic slot waveguides. Opt. Express 16, 21209–21214 (2008)

    Article  ADS  Google Scholar 

  29. Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner, E. Hasman, Observation of optical spin symmetry breaking in nanoapertures. Nano Lett. 9, 3016–3019 (2009)

    Article  ADS  Google Scholar 

  30. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  31. K. Aydin, M. Imogen, H.A. Atwater, Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express 18, 13407–13417 (2010)

    Article  ADS  Google Scholar 

  32. J.M. Blairon, R. Brout, F. Englert, J. Greensite, Chiral symmetry-breaking in the action formulation of lattice gauge theory. Nucl. Phys. 180, 439–457 (1981)

    Article  ADS  Google Scholar 

  33. R. Brout, A brief course in spontaneous symmetry breaking. I. The paleolitic age, arXiv:hep-th /0203096

    Google Scholar 

  34. F. Englert, A brief course in spontaneous symmetry breaking. II. Modern times: the BEH mechanism, arXiv:hep-th /0203097

    Google Scholar 

  35. R. Brout, F. Englert, Spontaneous broken symmetry. Comptes Rendue Phys. 8, 973–985 (2007)

    Article  ADS  Google Scholar 

  36. B.D. Esry, C.H. Greene, Spontaneous spatial symmetry breaking in two-component Bose–Einstein condensates. Phys. Rev. A 59, 1457–1460 (1999)

    Article  ADS  Google Scholar 

  37. B. Wu, Q. Niu, Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices. Phys. Rev. A 64, 061603 (2001)

    Article  ADS  Google Scholar 

  38. D. Snoke, Spontaneous Bose coherence of excitons and polaritons. Science 298, 1368 (2002)

    Article  ADS  Google Scholar 

  39. L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate. Nature 443, 312–315 (2006)

    Article  ADS  Google Scholar 

  40. E.J. Mueller, T.L. Ho, M. Ueda, G. Baym, Fragmentation of Bose–Einstein condensates. Phys. Rev. A 74, 033612 (2006)

    Article  ADS  Google Scholar 

  41. M.W. Jack, M.J. Collett, D.F. Walls, Coherent quantum tunneling between two Bose–Einstein condensates. Phys. Rev. A 54, R4625–R4628 (1996)

    Article  ADS  Google Scholar 

  42. J. Ruostekoski, D.F. Walls, Bose–Einstein condensate in a double-well potential as an open quantum system. Phys. Rev. A 58, R50–R53 (1998)

    Article  ADS  Google Scholar 

  43. M. Albiez, R. Gati, J. Folling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Article  ADS  Google Scholar 

  44. L.C. Qian, M.L. Wall, S.L. Zhang, Z.W. Zhou, H. Pu, Bose–Einstein condensates on a ring with periodic scattering length: spontaneous symmetry breaking and entanglement. Phys. Rev. A 77, 013611 (2008)

    Article  ADS  Google Scholar 

  45. B. Xiong, J.B. Gong, H. Pu, W.Z. Bao, B.W. Li, Symmetry breaking and self-trapping of a dipolar Bose–Einstein condensate in a double-well potential. Phys. Rev. A 79, 013626 (2009)

    Article  ADS  Google Scholar 

  46. M. Matuszewski, B.A. Malomed, M. Trippenbach, Spontaneous symmetry breaking of solitons trapped in a double-channel potential. Phys. Rev. A 75, 063621 (2007)

    Article  ADS  Google Scholar 

  47. A. Gubeskys, B.A. Malomed, Symmetric and asymmetric solitons in linearly coupled Bose–Einstein condensates trapped in optical lattices. Phys. Rev. A 75, 063602 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Gubeskys, B.A. Malomed, Spontaneous soliton symmetry breaking in two-dimensional coupled Bose–Einstein condensates supported by optical lattices. Phys. Rev. A 76, 043623 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. M. Trippenbach, E. Infeld, J. Gocalek, M. Matuszewski, M. Oberthaler, B.A. Malomed, Spontaneous symmetry breaking of gap solitons in double-well traps. Phys. Rev. A 78, 013603 (2008)

    Article  ADS  Google Scholar 

  50. N.V. Hung, M. Trippenbach, B.A. Malomed, Symmetric and asymmetric solitons trapped in H-shaped potentials. Phys. Rev. A 84, 053618 (2011)

    Article  ADS  Google Scholar 

  51. T. Mayteevarunyoo, B.A. Malomed, G. Dong, Spontaneous symmetry breaking in a nonlinear double-well structure. Phys. Rev. A 78, 053601 (2008)

    Article  ADS  Google Scholar 

  52. X.-F. Zhou, S.-L. Zhang, Z.-W. Zhou, B.A. Malomed, H. Pu, Bose–Einstein condensation on a ring-shaped trap with nonlinear double-well potential. Phys. Rev. A 85, 023603 (2012)

    Article  ADS  Google Scholar 

  53. T. Mayteevarunyoo, B.A. Malomed, A. Reoksabutr, Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials. J. Mod. Opt. 58, 1977–1989 (2011)

    Article  ADS  Google Scholar 

  54. S.K. Adhikari, B.A. Malomed, L. Salasnich, F. Toigo, Spontaneous symmetry breaking of Bose–Fermi mixtures in double-well potentials. Phys. Rev. A 81, 053630 (2010)

    Article  ADS  Google Scholar 

  55. P.-T. Qi, W.-S. Duan, Tunneling dynamics and phase transition of a Bose–Fermi mixture in a double well. Phys. Rev. A 84, 033627 (2011)

    Article  ADS  Google Scholar 

  56. S.O. Demokritov, A.A. Serga, B. Hillebrands, M.P. Kostylev, B.A. Kalinikos, Experimental observation of symmetry-breaking nonlinear modes in an active ring. Nature 426, 159–162 (2003)

    Article  ADS  Google Scholar 

  57. A.E. Miroshnichenko, B.A. Malomed, Y.S. Kivshar, Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123 (2011)

    Article  ADS  Google Scholar 

  58. R. Driben, B.A. Malomed, Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323–4325 (2011)

    Article  ADS  Google Scholar 

  59. N.V. Alexeeva, I.V. Barashenkov, A.A. Sukhorukov, Y.S. Kivshar, Optical solitons in PT -symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (2012)

    Article  ADS  Google Scholar 

  60. A.C. Newell, J.V. Moloney, Nonlinear Optics (Addison-Wesley, Redwood City, 1992)

    Google Scholar 

  61. A. Hasegawa, M. Matsumoto, Optical Solitons in Fibers (Springer, Berlin, 2003)

    Book  Google Scholar 

  62. B.A. Malomed, Soliton Management in Periodic Systems (Springer, New York, 2006)

    MATH  Google Scholar 

  63. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007)

    Google Scholar 

  64. C. Denz, S. Flach, Y.S. Kivshar (eds.) Nonlinearities in Periodic Structures and Metamaterials, (Springer, Heidelberg, 2010)

    Google Scholar 

  65. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg, Discrete solitons in optics. Phys. Rep. 463, 1–126 (2008)

    Article  ADS  Google Scholar 

  66. Y.V. Kartashov, V.A. Vysloukh, L. Torner, Soliton shape and mobility control in optical lattices. Progr. Opt. 52, 63–148 (2009)

    Article  Google Scholar 

  67. Y.V. Kartashov, B.A. Malomed, L. Torner, Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247–306 (2011)

    Article  ADS  Google Scholar 

  68. P. Berini, Long-range surface plasmon polaritons. Adv. Opt. Phot. 1, 484–588 (2009)

    Article  Google Scholar 

  69. M. Kauranen, A.V. Zayats, Nonlinear plasmonics. Nat. Phot. 6, 737–748 (2012)

    Article  Google Scholar 

  70. P.Y.P. Chen, B.A. Malomed, P.L. Chu, Trapping Bragg solitons by a pair of defects. Phys. Rev. E 71, 066601 (2005)

    Article  ADS  Google Scholar 

  71. P.Y.P. Chen, B.A. Malomed, P.L. Chu, Interaction of solitons with complex defects in Bragg gratings. Phys. Lett. A 372, 327–332 (2008)

    Article  ADS  Google Scholar 

  72. D.P. Hand, P.St.J. Russell, Photoinduced refractive index changes in germanosilicate fibers. Opt. Lett. 15, 102–104 (1990)

    Article  ADS  Google Scholar 

  73. K.O. Hill, Y. Fujii, D.C. Johnson, B.S. Kawasaki, Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Appl. Phys. Lett. 32, 647 (1978)

    Article  ADS  Google Scholar 

  74. R. Kashyap, Fiber Bragg Gratings (Academic Press, San Diego, 1999)

    Google Scholar 

  75. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21, 1729–1731 (1996)

    Article  ADS  Google Scholar 

  76. D.N. Christodoulides, R.I. Joseph, Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989)

    Article  ADS  Google Scholar 

  77. A.B. Aceves, S. Wabnitz, Self-induced transparency solitons in nonlinear refractive periodic media. Phys. Lett. A 141, 37–42 (1989)

    Article  ADS  Google Scholar 

  78. B.A. Malomed, R.S. Tasgal, Vibration modes of a gap soliton in a nonlinear optical medium. Phys. Rev. E 49, 5787–5796 (1994)

    Article  ADS  Google Scholar 

  79. I.V. Barashenkov, D.E. Pelinovsky, E.V. Zemlyanaya, Vibrations and oscillatory instabilities of gap solitons. Phys. Rev. Lett. 80, 5117–5120 (1998)

    Article  ADS  Google Scholar 

  80. A. De Rossi, C. Conti, S. Trillo, Stability, multistability, and wobbling of optical gap solitons. Phys. Rev. Lett. 81, 85–88 (1998)

    Article  ADS  Google Scholar 

  81. B.J. Eggleton, R.E. Slusher, C.M. de Sterke, P.A. Krug, J.E. Sipe, Bragg grating solitons. Phys. Rev. Lett. 76, 1627–1630 (1996)

    Article  ADS  Google Scholar 

  82. J.T. Mok, C.M. de Sterke, I.C.M. Littler, B.J. Eggleton, Dispersionless slow light using gap soliton. Nat. Phys. 2, 775–780 (2006)

    Article  Google Scholar 

  83. W.C.K. Mak, B.A. Malomed, P.L. Chu, Interaction of a soliton with a local defect in a fiber Bragg grating. J. Opt. Soc. Am. B 20, 725–735 (2003)

    Article  ADS  Google Scholar 

  84. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic Press, New York, 1991)

    Google Scholar 

  85. C.M. de Sterke, J.E. Sipe, Gap solitons, in Progress in Optics XXXIII, ed. by E. Wolf (Elsevier Science, Amsterdam, 1994)

    Google Scholar 

  86. C.M. de Sterke, K.R. Jackson, B.D. Robert, Nonlinear coupled mode equations on a finite interval: a numerical procedure. J. Opt. Soc. Am. B 8, 403–412 (1991)

    Article  ADS  Google Scholar 

  87. G. Iooss, D.D. Joseph, Elementary Stability Bifurcation Theory (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  88. T. Iizuka, C.M. de Sterke, Phys. Rev. E 61, 4491–4499 (2000)

    Article  ADS  Google Scholar 

  89. D. Mandelik, R. Morandotti, J.S. Aitchison, Y. Silberberg, Gap solitons in waveguide arrays. Phys. Rev. Lett. 92, 093904 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kabakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kabakova, I.V., Uddin, I., Jeyaratnam, J., Sterke, C.M.d., Malomed, B.A. (2012). Spontaneous Symmetry Breaking of Pinned Modes in Nonlinear Gratings with an Embedded Pair of Defects. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_22

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics