Skip to main content

Defect Modes, Fano Resonances and Embedded States in Magnetic Metamaterials

  • Chapter
  • First Online:
Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations

Part of the book series: Progress in Optical Science and Photonics ((POSP,volume 1))

Abstract

We consider a simplified model of a nonlinear magnetic metamaterial, consisting of a weakly-coupled, periodic split-ring resonator (SRR) array capable of nonlinear capacitive response. We analyze three related problems: (a) The calculation of localized modes around simple magnetoinductive impurities located at the surface or at the bulk of the array, in closed form for both, linear and nonlinear cases. (b) The scattering of magnetoinductive waves across internal (external) capacitive (inductive) defects coupled to the SRR array and the occurrence of Fano resonances, and how to tune them by changing the external parameters of the system. (c) Description of a method for building a stable localized magnetoinductive mode embedded in the linear band of extended states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the presence of dissipation, a term of the form \(i \gamma \Omega\) enters Eq. (3). For a complex wavevector \(k=k_{r}-i k_{i}\), with \(|k_{i}|\ll |k_{r}|\), one obtains \(\Omega^{2}\approx (1+\sum\nolimits_{n m} \lambda_{n m} \cos(m k_{r}))^{-1}\) and \(k_{i}\approx \gamma ( 1+\sum\nolimits_{n m} \lambda_{n m} \cos(m k_{r}))^{1/2}/\sum\nolimits_{m} \lambda_{n m} \sin(m k_{r})\). Neglect of dissipation effects is valid provided \(|k_{i}| L\ll 1\).

References

  1. D.R. smith, W.J. Padilla, D.C. Wier, S.C.N. Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  2. J.B Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  3. S. Linden, C. Enkrich, G. Dolling, M.W. Klein, J. Zhou, T. Koschny, C.M. Soukoulis, S. Burger, F. Schmidt, M. Wegener, IEEE J. Sel. Top. Quantum Electron. 12, 1097 (2006)

    Article  Google Scholar 

  4. T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang, Science 303, 1494 (2004)

    Article  ADS  Google Scholar 

  5. M. Gorkunov, M. Lapine, E. Shamonina, K.H. Ringhofer, Eur. Phys. J. B 28, 263 (2002)

    Article  ADS  Google Scholar 

  6. M.C.K. Wiltshire, E. Shamonina, I.R. Young, L. Solymar, Electron. Lett. 39, 215 (2003)

    Article  Google Scholar 

  7. R.R.A. Syms, E. Shamonina, V. Kalinin, L. Solymar, J. Appl. Phys. 97, 64909 (2005)

    Article  Google Scholar 

  8. E. Shamonina, V.A. Kalinin, K.H. Ringhofer, L. Solymar, J. Appl. Phys. 92, 6252 (2002)

    Article  ADS  Google Scholar 

  9. E. Shamonina, L. Solymar, J. Phys. D Appl. Phys. 37, 362 (2004)

    Article  ADS  Google Scholar 

  10. M.J. Freire, R. Marques, F. Medina, M.A.G. Laso, F. Martin, Appl. Phys. Lett. 85, 4439 (2004)

    Article  ADS  Google Scholar 

  11. I.V. Shadrivov, A.N. Reznik, Y.S. Kivshar, Physics B 394, 180 (2007)

    Article  ADS  Google Scholar 

  12. For a recent review see, for instance, A.E. Miroschnichenko, S. Flach, Y.S. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Google Scholar 

  13. M.I. Molina, A.E. Miroshnichenko, Y.S. Kivshar, Phys. Rev. Lett. 108, 070401 (2012)

    Article  ADS  Google Scholar 

  14. N.N. Rosanov, N.V. Vysotina, A.N. Shatsev, I.V. Shadrivov, D.A. Powell, Y.S. Kivshar, Opt. Express 19, 26500 (2011)

    Article  ADS  Google Scholar 

  15. R.R.A. Syms, E. Shamonina, L. Solymar, IEE Proc. Microw. Antennas Propag. 153, 111 (2006)

    Article  Google Scholar 

  16. N. Lazarides, G.P. Tsironis, Y.S. Kivshar, Phys. Rev. E 77, 065601 (2008)

    Google Scholar 

  17. M.I. Molina, N. Lazarides, G.P. Tsironis, Phys. Rev. E 80, 046605 (2009)

    Article  ADS  Google Scholar 

  18. E.N. Economou, Greens Functions in Quantum Physics (Springer, Berlin, 1979)

    Book  Google Scholar 

  19. M.I. Molina, G.P. Tsironis, Phys. Rev. B (Rap. Comm.) 47, 15330 (1993)

    Article  ADS  Google Scholar 

  20. M.I. Molina, Phys. Rev. B 60, 2276 (1999)

    Article  ADS  Google Scholar 

  21. C.A. Bustamante, M.I. Molina, Phys. Rev. B 62, 15287 (2000)

    Article  ADS  Google Scholar 

  22. M.I. Molina, Phys. Rev. B 73, 014204 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. M.I. Molina, Phys. Rev. B 71, 035404 (2005)

    Article  ADS  Google Scholar 

  24. M.I. Molina, Phys. Rev. B 73, 014204 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.I. Molina, Phys. Rev. B 74, 045412 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  26. B.A. Malomed, M.Y. Azbel, Phys. Rev. B. 47, 10402 (1993)

    Article  ADS  Google Scholar 

  27. D. Chen, S. Aubry, G.P. Tsironis, Phys. Rev. Lett. 77, 4776 (1996)

    Article  ADS  Google Scholar 

  28. M.I. Molina, N. Lazarides, G.P. Tsironis, Phys. Rev. E 80, 046605 (2009)

    Article  ADS  Google Scholar 

  29. M.I. Molina, G.P. Tsironis, Acta Phys. Polon. A 116, 635 (2009)

    ADS  Google Scholar 

  30. N. Lazarides, M.I. Molina, G.P. Tsironis, Physica B 405, 3007 (2010)

    Article  ADS  Google Scholar 

  31. M.I. Molina, Phys. Rev. B 71, 035404 (2005)

    Article  ADS  Google Scholar 

  32. M.I. Molina, Phys. Rev. B 74, 045412 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Physics D 16, 318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  34. von J. Neumann, E. Wigner, Phys. Z. 30, 465 (1929)

    MATH  Google Scholar 

  35. F.H. Stillinger, D.R. Herrick, Phys. Rev. A 11, 446 (1975)

    Article  ADS  Google Scholar 

  36. F.H. Stillinger, T.A. Weber, Phys. Rev. A 10, 1122 (1974)

    Article  ADS  Google Scholar 

  37. F.H. Stillinger, J. Chem, Phys. 45, 3623 (1966)

    Article  ADS  Google Scholar 

  38. F.H. Stillinger, D.E. Stillinger, Phys. Rev. A 10, 1109 (1974)

    Article  ADS  Google Scholar 

  39. A.K. Jain, C.S. Shastry, Phys. Rev. A 12, 2237 (1975)

    Article  ADS  Google Scholar 

  40. F. Capasso, C. Sirtori, J. Faist, D.L. Sivco, S-N.G. Chu, A.Y. Cho, Nature 358, 565 (1992)

    Article  ADS  Google Scholar 

  41. S. Gonzlez-Prez-Sandi, J. Fujioka, B.A. Malomed, Physica D 197, 86 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Yagasaki, A.R. Champneys, B.A. Malomed, Nonlinearity 18, 2591 (2005)

    Google Scholar 

  43. B.A. Malomed, J. Fujioka, A. Espinosa-Ceron, R.F. Rodriguez, S. Gonzalez, Chaos 16, 013112 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  44. Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, M. Segev, Phys. Rev. Lett. 107, 183901 (2011)

    Article  ADS  Google Scholar 

  45. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fondecyt (Grant 1080374), Programa ICM P10-030-F, and Programa de Financiamiento Basal de Conicyt (Grant FB0824/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Molina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Molina, M.I. (2012). Defect Modes, Fano Resonances and Embedded States in Magnetic Metamaterials. In: Malomed, B. (eds) Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations. Progress in Optical Science and Photonics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10091_2012_15

Download citation

  • DOI: https://doi.org/10.1007/10091_2012_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21206-2

  • Online ISBN: 978-3-642-21207-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics