Skip to main content

Mid-infrared Electroluminescence in LEDs Based on InAs and Related Alloys

  • Chapter
Mid-infrared Semiconductor Optoelectronics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 118))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See for example: InAsSbP/InAs LEDs for the 3.3–5.5μm spectral range, B. Matveev et al., IEE Proc. Optoelectronics, 145, Special Issue on Mid-IR devices & materials and papers therein — (see also vol 144 for additional related papers).

    Google Scholar 

  2. High Power 4.6 μm LEDs for CO detection grown by LPE using rare earth gettering. A. Krier, H. Gao, V. Sherstnev, Yu. Yakovlev. Electronics Letters, (USA), 35, 1665–7(1999)

    Article  Google Scholar 

  3. A.N. Baranov, A.N. Imenkov, O.P. Kapranchik, V.V. Negreskul, A.G. Chernyavskii, V.V. Sherstnev Yu.P. Yakovlev. Long-wavelength light-emitting diodes, based on InAsSbP/InAs heterostructures (λ=3.0–4.8μm) at 300K with wide-gap window. Pisma v Zhurnal Tekh.Fiziki (USSR), 16(16), p.42–47, (1990).

    Google Scholar 

  4. S. McCabe and B.D. MacCraith, Electron.Lett. 29 1719–21(1993)

    ADS  Google Scholar 

  5. S.D. Smith, A. Vass, P Bramley, J.G. Crowder and C.H. Wang, IEE proc-Optoelectronics, 144, No 5, 266 (1997)

    Article  Google Scholar 

  6. M.K. Parry and A. Krier, Electron. Lett. 30 1968–69 (1994)

    Article  Google Scholar 

  7. A.A. Popov, V.V. Sherstnev, Y.P. Yakovlev, A.N. Baranov and C. Alibert, Electron. Lett. 33 86–88 (1997)

    Article  Google Scholar 

  8. A. Krier and Y. Mao, IEE Proc.Optoelectron. 144 355–59 (1997).

    Article  Google Scholar 

  9. A.A. Popov, M.V Stepanov, V.V. Sherstnev and Y.P. Yakovlev, Tech. Phys. Lett. 24 596–98 (1997)

    Article  ADS  Google Scholar 

  10. A. Krier & V.V. Sherstnev, J. Phys. D: Appl. Phys. 33, 101–10 (2000) Powerful interface light emitting diodes for methane gas detection.

    Article  ADS  Google Scholar 

  11. A.A Popov, V.V. Sherstnev, Y.P. Yakovlev, A.N. Baranov and C. Alibert, ‘Powerful mid-infrared light emitting diodes for pollution monitoring’ Electron. Lett., 33 (1997) 86–88

    Article  Google Scholar 

  12. A. Krier and Y. Mao, ‘2.5μm light emitting diodes in InAs0.36Sb0.20P0.44 /InAs f or HF detection, IEE Proc Optoelectronics 144, 355–359 (1997)

    Article  Google Scholar 

  13. Powerful 4.6μm light emitting diodes for CO detection, A. Krier, H.H. Gao, V.V. Sherstnev & Y. Yakovlev,-J. Phys D, 32, 3117–3121 (1999)

    Article  ADS  Google Scholar 

  14. A.A Popov, M.V. Stepanov, V.V Sherstnev, Y. P. Yakovlev ‘InAsSb light emitting diodes for the detection of CO2 (λ=4.3μm)’ Technical Phys. Lett., Vol 24, No.8, 1998 p596–598

    Article  ADS  Google Scholar 

  15. A. Verdin, Gas Analysis Instrumentation, Wiley, New York, 1975

    Google Scholar 

  16. I. Melngailis & R.H. Rediker, J. Appl. Phys, 37,899(1966)

    Article  ADS  Google Scholar 

  17. I. Melngailis & R.H. Rediker, Appl. Phys. Lett., 2,202 (1963)

    Article  ADS  Google Scholar 

  18. O. Madelung, Physics of III-V compounds, Wiley, New York, (1964)

    Google Scholar 

  19. A. Andreev et al., Sov. Techn. Phys Lett., 16, 135–137(1990), Semicond. 27, 236–240 (1993)

    Google Scholar 

  20. N. P. Esina et al., J. Appl. Spectrosc. 42, 1985, 7465

    Article  Google Scholar 

  21. A.A Popov, V.V. Sherstnev, Y.P. Yakovlev, 1.94μm LEDs for moisture content measurements, Tech. Phys. Lett., 23, 783 (1997)

    Article  ADS  Google Scholar 

  22. H.H. Gao, A. Krier and V.V. Shertsnev, J. Phys. D — Appl. Phys. 32 (1999) 1768–1772

    Article  ADS  Google Scholar 

  23. A. Krier, V.V. Sherstnev & H.H. Gao, A novel LED module for the detection of H2S at 3.8 μm, J. Phys. D.-Applied Phyiscs, 33, 1656, (2000)

    Article  ADS  Google Scholar 

  24. PJP Tang et al., Appl. Phys. Lett., 72, 3473 (1998) efficient 300 K light emitting diodes at λ = 5 μm and 8 μm from InAs/InAsSb single quantum wells.

    Article  ADS  Google Scholar 

  25. M.J. Pullin et al.., Appl. Phys. Lett., 74, 2384 (1999) Room temperature InAsSb strained-layer superlattice light emitting diodes at 4.2μm with AlSb barriers for improved carrier confinement

    Article  ADS  Google Scholar 

  26. C. Sirtori et al.., Appl. Phys. Lett., 66, 4, (1995) Quantum cascade unipolar intersubband light emitting diodes in the 8–13μm wavelength region

    Article  ADS  Google Scholar 

  27. J. Faist et al., Appl. Phys. Lett.,64,1144 (1994)

    Article  ADS  Google Scholar 

  28. J. Faist et al., Appl. Phys. Lett., 65,94(1994)

    Article  ADS  Google Scholar 

  29. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, A.D. Johnson & G.J. Pryce, Appl. Phys. Lett.,64, 2433(1994)

    Article  ADS  Google Scholar 

  30. T. Ashley, N.T. Gordon & T.J. Phillips, J. Modern Optics, 46, 1677 (1999) Optical modelling of cone concentrators for positive and negative IR emitters.

    Article  ADS  Google Scholar 

  31. T. Ashley & C.T. Elliott, Electron. Lett., 21, 451 (1985)

    ADS  Google Scholar 

  32. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, A.D. Johnson & G.J. Pryce, Infrared Phys & Technol., 36, 1037 (1996)

    Article  ADS  Google Scholar 

  33. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, A.D. Johnson & G.J. Pryce, J. Crystal growth, 159, 1100 (1996)

    Article  ADS  Google Scholar 

  34. C. Verie & C.R. Granger, Acad. Sci. Paris, 261, 3349 (1965)

    Google Scholar 

  35. K.K. Mahavadi et al., J. Vac. Sci. & Tecjhnol., A 8, 1210 (1990)

    Article  ADS  Google Scholar 

  36. A. Ravid & A. Zussman, G. Cinader & A. Oron, Appl. Phys. Lett., 55, 2704 (1989)

    Article  ADS  Google Scholar 

  37. R. Zucca et al., J. Vac. Sci. & Technol., A 6, 2725 (1988).

    ADS  Google Scholar 

  38. P. Bouchut et al.., J. Vac. Sci. & Technol.,B9, 1794 (1991)

    Article  Google Scholar 

  39. T. Ashley, C.T. Elliott, N.T. Gordon, R.S. Hall, C.D. Maxe & B.E. Matthews, Appl. Phys. Lett. 65, 2314 (1994)

    Article  ADS  Google Scholar 

  40. W. Lo & D.E. Swets, Appl. Phys. Lett., 36, 450 (1980)

    Article  ADS  Google Scholar 

  41. Z. Shi et al., Appl. Phys Lett., 66, 2573 (1995)

    Article  ADS  Google Scholar 

  42. Xu J, Lambrecht A, Tacke M, IEEE Photonic Tech. Lett. 10:(2) 206–208 (1998)

    Article  ADS  Google Scholar 

  43. Feit Z, Mak P, Woods R, et al.. Spectrochimica Acta A 52:(8) 851–855 (1996)

    Article  ADS  Google Scholar 

  44. C.R. Pidgeon et al., Phys Rev. B. 58, 12908 (1998)

    Article  ADS  Google Scholar 

  45. Z. Shi, Appl. Phys. Lett., 72, 1272 (1998)

    Article  ADS  Google Scholar 

  46. T. Ashley et al., Appl. Phys. Lett., 64, 2433 (1994) and T. Ashley & C.T. Elliott, Semicond. Sci & Technol. 6, C99 (1991)

    Article  ADS  Google Scholar 

  47. M.J. Kane et al., Mater. Res. Soc. Symp.Proc. 450, 129 (1997)

    Google Scholar 

  48. A.R. Beattie, J. Phys. Chem. Solids, 23, 1049 (1962).

    Article  ADS  Google Scholar 

  49. M. Kane et al., “Emission efficiency in InAs LEDs controlled by surface recombination” Presented at Boston MRS conference (Dec 1996)

    Google Scholar 

  50. M.J. Kane et al., Appl. Phys. Lett., 76, 943 (2000)

    Article  ADS  Google Scholar 

  51. M. Takeshima, Auger recombination in InAs, Jap. J. Appl. Physics 22, 491, (1983)

    Article  ADS  Google Scholar 

  52. See for example; A.N. Baranov, T.I. Voronina, T.S. Logunova, M.A. Sipovskaya, V.V. Sherstnev, Yu.P. Yakovlev. Semiconductors, 27, (1993). Zotova NV, Karandashev SA, Matveev BA, et al.. Semiconductors, 33, 920, (1999). A.Krier, H.H.Gao, V.V.Sherstnev. Journal of Applied Physics, 85, 8419, (1999).

    Google Scholar 

  53. A. Krier, V.V. Sherstnev, Yu. Yakovlev. Journal of Physics D, 33, 101, (2000).

    Article  ADS  Google Scholar 

  54. A. Kumar, D. Pal & D.N. Bose, J. Electronic Mater., 24, (1995) 833

    ADS  Google Scholar 

  55. M. C. Wu et al.., J. Appl. Phys. 71(1) 1992, 456

    Article  ADS  Google Scholar 

  56. W. Gao et al.., J. Appl. Phys. 80(12) 1996, 7094

    Article  ADS  Google Scholar 

  57. T. Bagraev, L.S. Vlasenko, K.A. Gatsoev, A.T. Gorelenok, A.V. Kamanin, V.V. Mamutin, B.V. Pushnyul, V.K. Tibilov, Y.P. Tolparov and A.E. Shubin, Sov. Phys.-Semiconductors 18(49) 1984

    Google Scholar 

  58. F. Bantien, E. Bauser & J. Weber, “Incorporation of erbium in GaAs by liquid phase epitaxy”, J. Appl. Phys., 61, (1987) 2803

    Article  ADS  Google Scholar 

  59. Purification of epitaxial InAs grown by liquid phase epitaxy using gadolinium gettering, A. Krier, H.H. Gao & V. Sherstnev, J. Appl. Phys., 85,(12)8419–8422 (1999).

    Article  ADS  Google Scholar 

  60. High quality InAs grown by liquid phase epitaxy using gadolinium gettering, H. Gao, A. Krier & V. Sherstnev, Semicond. Sci & Technol. 14, 441–5 (1999), IOP Publishing

    Article  ADS  Google Scholar 

  61. N.V. Zotova et al.., The first intenational conference on mid-optoeletronics-materials and devices, MIOMD Lancaster, 1996

    Google Scholar 

  62. R. D. Grober, et al.., Physics Review B, vol. 43, No. 14, 1991, 11732

    Article  ADS  Google Scholar 

  63. Z.M. Fang, et al.., J.Appl. Phys. 67(11), 1990, 7034

    Article  ADS  Google Scholar 

  64. Y. Lacroix, et al.., Appl. Phys. Lett. 66(9) 1995, 1101

    Article  ADS  Google Scholar 

  65. R. D. Grober et al.., J. Appl. Phys. 65(10) 1989, 4079

    Article  ADS  Google Scholar 

  66. P.J.P Tang, et al.., Semicond. Sci. Technol. 8, 1983, 2135

    Article  ADS  Google Scholar 

  67. H.H. Gao, A. Krier and V.V. Shertsnev, J. Phys. D — Appl. Phys. 32 (1999) 1768–1772

    Article  ADS  Google Scholar 

  68. S. Kim, M. Erdtmann, D. Wu, E. Kass, H. Yi, J. Diaz, and M. Razeghi, Photoluminescence study of InAsSb/InAsSbP heterostructures grown by low-pressure metalorganic chemical vapor deposition. Appl.Phys.Letters 69(11), pp. 1614–1616 (199b).

    Article  Google Scholar 

  69. A. Krier, H.H. Gao, V.V. Sherstnev & Y. Yakovlev, High Power 4.6µm light emitting diodes for CO detection, J. Phys D, 32, 3117–3121 (1999), IOP Publishing

    Article  ADS  Google Scholar 

  70. A.N. Baranov, T.I. Voronina, A.A. Gorelenok, T.S. Logunova, A.M. Litvak, M.A. Sipovskaya, S.P. Starosel’tseva, V.A. Tikhomirova, V.V. Sherstnev, Yu.P. Yakovlev. Semiconductors, 26, 905, (1992).

    Google Scholar 

  71. A. Krier, V.V. Sherstnev, The influence of melt purification and structure defects on mid-infrared light emitting diodes, J. Phys. D-Applied Physics, 36(13), 1484, 2003, IOP Publishing

    Article  ADS  Google Scholar 

  72. S.A. Choulis, A. Andreev, M. Merrick, S. Jin, D.G. Clarke, B.N. Murdin, A.R. Adams, A. Krier, V.V. Sherstnev, Phys. Stat. Sol. B-Basic Research 235(2), 312 (2003), John Wiley

    Article  ADS  Google Scholar 

  73. A. R. Adams, M. Silver, and J. Allam, Semiconductors and Semimetals, Vol. 55, Academic, London, (1998), pp. 301–331.

    Google Scholar 

  74. G. G. Zegrya and A. D. Andreev, JETP 82, 328, (1996).

    ADS  Google Scholar 

  75. G. G. Zegrya and A. D. Andreev, Appl. Phys. Lett. 67, 2681, (1995).

    Article  ADS  Google Scholar 

  76. S.A. Choulis, A. Andreev, M. Merrick, A.R. Adams, B.N. Murdin, A. Krier, V.V. Sherstnev, Appl. Phys. Lett, 82(8), 1149 (2003), American Institue of Physics

    Article  ADS  Google Scholar 

  77. T. Ashley, D.T. Dutton, C.T. Elliott, N.T. Gordon & T.J. Phillips, SPIE conference 3289 “Micro-optics Integration and assemblies” part of Phonics West meeting, San Jose, CA, USA, 26–30 Jan 1998

    Google Scholar 

  78. T. Ashley, N.T. Gordon & T.J. Phillips, J. modern Optics, 46(11), 1677 (1999)

    Article  ADS  Google Scholar 

  79. I. Schnitzer et al., Appl. Phys. Lett., 63, 2174 (1993)

    Article  ADS  Google Scholar 

  80. Hadji E. et.al.: Resonant cavity light emitting diodes for the 3–5µm range, Solid-State Electronics, Vol. 40, pp.473–6, 1996

    Article  ADS  Google Scholar 

  81. P.N. Stavrinou et al., J. Appl. Phys., 86,3475 (1999)

    Article  ADS  Google Scholar 

  82. H. De Neve et al., Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends, IEEE J Quantum Elect 34:(9) 1612–1631 (1998)

    Article  ADS  Google Scholar 

  83. Baranov AN, Rouillard Y, Boissier G, et al.. Electron Lett 34:(3) 281–282 (1998)

    Article  Google Scholar 

  84. N.T. Gordon, C.L. Jones & D.J. Purdy, Infrared Physics., 31, 599 (1991)

    Article  ADS  Google Scholar 

  85. B. Matveev et al., IEE Proc. Optoelectronics 145, 254 (1998)

    Article  Google Scholar 

  86. A. Sugimura, “Band to band Auger effect in GaSb and InAs lasers”, J. Appl. Phys. Vol. 51, No.8, 4405–4411(1980).

    Article  ADS  Google Scholar 

  87. M. Takeshima, “Disorder-enhanced Auger recombination in III-V alloys” J. Appl. Phys. Vol.49, No12, pp6118–6124.(1978)

    Article  ADS  Google Scholar 

  88. S. Chinn, P. Zory, and A. Reisinger, IEEE J. Quantum Electron., QE-24 2191 (1988)

    Article  ADS  Google Scholar 

  89. B. Gel’mont, Z. Sokolova, and I. Yassievich, Sov. Phys. Semicond. 16, 382 (1982)

    Google Scholar 

  90. E. R. Glaser, B. R. Bennett, B. V. Shanabrook, and R. Magno, Appl. Phys. Lett. 68, 3614 (1996).

    Article  ADS  Google Scholar 

  91. G. Park, O. B. Shchekin, d. L. Huffaker, and D. G. Deppe, Appl. Phys. Lett. 73, 3351 (1998).

    Article  ADS  Google Scholar 

  92. E. Alphandery, R. J. Nicholas, N. J. Mason, B. Zhang, P. Mock, and G. R. Booker, Appl. Phys. Lett. 74, 2041 (1999).

    Article  ADS  Google Scholar 

  93. A. Krier, Z. Labadi, and A. Hammiche, J Phys D: Appl. Phys. 32, 2587 (1999).

    Article  ADS  Google Scholar 

  94. K. Mukai, N. Ohtsuka, H. Shoji, and M. Sugawara, Appl. Phys. Lett. 68, 3013 (1996).

    Article  ADS  Google Scholar 

  95. S. Raymond, P. Hawrylak, C. Gould, S. Fafard, A. Sachrajda, M. Potemski, Wojs, S. Charbonneau, D. Leonard, P. M. Petroff, and J. L. Merz, Solid State Commun. 101, 883 (1997).

    Article  ADS  Google Scholar 

  96. Raymond, X. Guo, J. K. Merz, and S. Fafard, Phys. Rev. B, 59, 7624 (1999).

    Article  ADS  Google Scholar 

  97. S. Fafard, Appl. Phys. Lett. 76, 2707 (2000).

    Article  ADS  Google Scholar 

  98. J. Oswald, K. Kuldová, J. Zeman, E. Hulicius, S. Jullian, and M. Potemski, Materials Science and Engineering B, 69–70, 318 (2000).

    Article  Google Scholar 

  99. A. Krier, X. L. Huang, and A. Hammiche, Appl. Phys. Lett. 77, 3791 (2000)

    Article  ADS  Google Scholar 

  100. A. Krier, X-L Huang, Physica E, 15, 159 (2002)

    Article  ADS  Google Scholar 

  101. P. J. P. Tang, C. C. Philips, and R. A. Stradling, Semicond. Sci. Technol. 8, 2135 (1993).

    Article  ADS  Google Scholar 

  102. P. J. P. Tang, M. J. Pullin, S. J. Chung, C. C. Phillips, R. A. Stradling, A. G. Norman, Y. B. Li and L. Hart, Semicond. Sci. Technol. 10, 1177 (1995).

    Article  ADS  Google Scholar 

  103. R. Grober & H.D. Drew, J. Appl. Phys. 65, 4079 (1989)

    Article  ADS  Google Scholar 

  104. S. H. Wei, and A. Zunger, Phys. Rev. B, 52, 12039 (1995).

    Article  ADS  Google Scholar 

  105. Y. B. Li, D. J. Bain, L. Hart, M. Livingstone, C. M. Ciesla, M. J. Pullin, P. J. Tang, W. T. Yuen, I. Galbraith, C. C. Phillips, C. R. Pidgeon, and R. A. Stradling, Phys. Rev. B, 55, 4589 (1997).

    Article  ADS  Google Scholar 

  106. V.V. Sherstnev, A. Krier, G. Hill, High tunability and superluminescence in InAs mid infrared light emitting diodes, J. Appl. Phys. D-Applied Physics, 35, 196, (2002) IOP Publishing

    Article  ADS  Google Scholar 

  107. A. Krier, V.V. Sherstnev, D. Wright, A.M. Monakhov, G. Hill, Electron. Lett., 39(12), 916 (2003) IEE

    Article  Google Scholar 

  108. S.A. Backes, J.R.A. Cleaver, A.P. Heberle, J.J. Baumberg and K. Kohler, Appl. Phys Lett., 74, 176 (2000)

    Article  ADS  Google Scholar 

  109. S. Chang, B. N. B. Rex, R.K. Chang, G. Chong and L.J. Guido, Appl. Phys. Lett., 75, 166 (2000)

    Article  ADS  Google Scholar 

  110. S.X. Jin, J. Li, J.Z. Li, J.Y. Lin and H.X. Jiang, Appl. Phys. Lett., 76, 631 (2000)

    Article  ADS  Google Scholar 

  111. R.A. Mair, K.C. Zeng, J.Y. Lin, H.X. Jiang, B. Zhang, L. Dai, A. Botchkarev, W. Kim, H. Morkoc, and M. A, Khan, Appl. Phys. Lett., 72,1530 (1998).

    Article  ADS  Google Scholar 

  112. R.P. Wang and MM. Dumitrescu, J. Appl. Phys., 81, 3391 (1997)

    Article  ADS  Google Scholar 

  113. Powerful interface light emitting diodes for methane gas detection, A. Krier & V.V. Sherstnev, J. Phys. D: Appl. Phys. 33, 101–106 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Krier, A., Huang, X.L., Sherstnev, V.V. (2006). Mid-infrared Electroluminescence in LEDs Based on InAs and Related Alloys. In: Krier, A. (eds) Mid-infrared Semiconductor Optoelectronics. Springer Series in Optical Sciences, vol 118. Springer, London . https://doi.org/10.1007/1-84628-209-8_11

Download citation

Publish with us

Policies and ethics