Skip to main content

PET and PET/CT Imaging in Tumors of the Pancreas and Liver

  • Chapter
Positron Emission Tomography

Summary

FDG-PET imaging appears helpful in differentiating malignant from benign hepatic lesions, with the exception of false-negative HCC, false-negative infiltrating cholangiocarcinoma, and false-positive inflammatory lesions. It is not helpful to identify HCC in patients with cirrhosis and regenerating nodules. In patients with primary malignant hepatic tumors that accumulate FDG, PET imaging does identify unexpected distant metastases (although miliary carcinomatosis is often false negative) and can help in monitoring response to therapy. FDG-PET imaging seems promising for monitoring patient response to therapy, including regional therapy to the liver, but larger studies are necessary.

FDG-PET imaging is especially helpful for the preoperative diagnosis of pancreatic carcinoma in patients with suspected pancreatic cancer in whom CT fails to identify a discrete tumor mass or in whom biopsy is nondiagnostic. By providing scintigraphic preoperative documentation of pancreatic malignancy in these patients, laparotomy may be undertaken with a curative intent, and the risk of aborting resection because of diagnostic uncertainty is minimized. FDG-PET imaging is also useful for M staging and restaging by detecting CT-occult metastatic disease and allowing nontherapeutic resection to be avoided altogether in this group of patients. As is true with other neoplasms, FDG-PET can accurately differentiate posttherapy changes from recurrence and holds promise for monitoring neoadjuvant chemoradiation therapy.

FDG-PET imaging is complementary to morphologic imaging with CT; therefore, integrated PET/CT imaging provides optimal images for interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kemmerer SC, Mortele KJ, Ros PR. CT scan of the liver. Radiol Clin N Am 1998;36(2):247–260.

    Article  PubMed  CAS  Google Scholar 

  2. Siegelman ES, Outwater EK. MR imaging technique of the liver. Radiol Clin N Am 1998;36(2):263–284.

    Article  PubMed  CAS  Google Scholar 

  3. Fulcher AS, Turner MA, Capps GW. MR cholangiography: technical advances and clinical applications. Radiographics 1999;19(1):25–43.

    PubMed  CAS  Google Scholar 

  4. del Pilar Fernandez M, Redvanly RD. Primary hepatic malignant neoplasms. Radiol Clin N Am 1998;36(2):333–348.

    Article  Google Scholar 

  5. Oppenheim BE. Liver imaging. In: Sandler MP, Coleman RE, Wackers FTJ, et al., editors. Diagnostic Nuclear Medicine. Baltmore: Williams & Wilkins, 1996:749–758.

    Google Scholar 

  6. Townsend DW, Beyer T, Bloggett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 2003;33(3):193–204.

    Article  PubMed  Google Scholar 

  7. Czernin J, editor. PET/CT: imaging structure and function. J Nucl Med 2004;45(suppl 1):1S–103S.

    Google Scholar 

  8. Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF. Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 2002;224(3):748–756.

    PubMed  Google Scholar 

  9. Weber G, Cantero A. Glucose-6-phosphatase activity in normal, precancerous, and neoplastic tissues. Cancer Res 1955;15:105–108.

    PubMed  CAS  Google Scholar 

  10. Weber G, Morris HP. Comparative biochemistry of hepatomas. III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 1963;23:987–994.

    PubMed  CAS  Google Scholar 

  11. Messa C, Choi Y, Hoh CK, et al. Quantification of glucose utilization in liver metastases: parametric imaging of FDG uptake with PET. J Comput Assist Tomogr 1992;16:684–689.

    PubMed  CAS  Google Scholar 

  12. Okazumi S, Isono K, Enomoto D, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med 1992;33:333–339.

    PubMed  CAS  Google Scholar 

  13. Torizuka T, Tamaki N, Inokuma T, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG PET. J Nucl Med 1995;36:1811–1817.

    PubMed  CAS  Google Scholar 

  14. Khan MA, Combs CS, Brunt EM, Lowe VJ, Wolverson MK, Solomon H, Collins BT, Di Bisceglie AM. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol 2000,32:792–797.

    Article  PubMed  CAS  Google Scholar 

  15. Delbeke D, Martin WH, Sandler MP, Chapman WC, Wright JK Jr, Pinson CW. Evaluation of benign vs. Malignant hepatic lesions with positron emission tomography. Arch Surg 1998;133:510–515.

    Article  PubMed  CAS  Google Scholar 

  16. Iwata Y, Shiomi S, Sasaki N, Jomura H, Nishigushi S, Seki S, Kawabe J, Ochi H. Clinical usefulness of positron emission tomography with fluorine-18-fluorodeoxiglucose in the diagnosis of liver tumors. Ann Nucl Med 2000;14:121–126.

    Article  PubMed  CAS  Google Scholar 

  17. Trojan J, Schroeder O, Raedle J, Baum RP, Herrmann G, Jacobi V, Zeuzem S. Fluorine-18 FDG positron emission tomography for imaging ofd hepatocellular carcinoma. Am J Gastroenterol 1999;94:3314–3319.

    Article  PubMed  CAS  Google Scholar 

  18. Schroder O, Trojan J, Zeuzem S, Baum RP. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitic C virus infection. Nuklearmedizin 1998;37:279–285.

    PubMed  CAS  Google Scholar 

  19. Liangpunsakul S, Agarwal D, Horlander JC, Kieff B, Chalasani N. Positron emission tomography for detecting occult hepatocellular carcinoma in hepatitis C cirrhotics awaiting for liver transplantation. Transplant Proc 2003;35:2995–2997.

    Article  PubMed  CAS  Google Scholar 

  20. Teefey SA, Hildeboldt CC, Dehdashti F, Siegel BA, Peters MG, Heiken JP, et al. Detection of primary hepatic malignancy in liver transplant candidates: prospective comparison of CT, MR imaging, US, and PET. Radiology 2003;226(2):533–542.

    PubMed  Google Scholar 

  21. Rose AT, Rose DM, Pinson CW, Wright JK, Blair T, Blanke C, et al. Hepatocellular carcinoma outcome based on indicated treatment strategy. Am Surg 1998;64:1122–1135.

    Google Scholar 

  22. Wudel LJ, Delbeke D, Morris D, Rice MH, Washington MK, Pinson CW, Chapman WC. The role of FDG-PET imaging in the evaluation of hepatocellular carcinoma. Am Surg 2003;69:117–126.

    PubMed  Google Scholar 

  23. Ho CL, Yu SC, Yeung DW. 11C-Acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 2003;44:213–221.

    PubMed  Google Scholar 

  24. Torizuka T, Tamaki N, Inokuma T, et al. Value of fluorine-18-FDG-PET to monitor hepatocellular carcinoma after interventional therapy. J Nucl Med 1994;35:1965–1969.

    PubMed  CAS  Google Scholar 

  25. Akuta K, Nishimura T, Jo S, et al. Monitoring liver tumor therapy with [18F]FDG positron emission tomography. J Comput Assist Tomogr 1990;14:370–374.

    PubMed  Google Scholar 

  26. Vitola JV, Delbeke D, Meranze SG, Mazer MJ, Pinson CW. Positron emission tomography with F-18-fluorodeoxyglucose to evaluate the results of hepatic chemoembolization. Cancer (Phila) 1996;78:2216–2222.

    Article  PubMed  CAS  Google Scholar 

  27. Langenhoff BS, Oyen WJ, Jager GJ, Strijk SP, Wobbes T, Corstens FH, Ruers TJ. Efficacy of fluorine-18-deoxyglucose positron emission tomography in detecting tumor recurrence after local ablative therapy for liver metastases: a prospective study. J Clin Oncol 2002;20:4453–4458.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson GS, Brinkmann F, Soulen MC, Alavi A, Zhuang H. FDG positron emission tomography in the surveillance of hepatic tumors treated with radiofrequency ablation. Clin Nucl Med 2003;28:192–197.

    Article  PubMed  Google Scholar 

  29. Ludwig V, Hopper OW, Martin WH, Kikkawa R, Delbeke D. FDG-PET surveillance of hepatic metastases from prostate cancer following radiofrequency ablation: case report. Am Surg 2003;69:593–598.

    PubMed  Google Scholar 

  30. Wong CY, Salem R, Raman S, Gates VL, Dworkin HJ. Evaluating 90Y-glass microsphere treatment response of unresectable colorectal liver metastases by [18F]FDG PET: a comparison with CT or MRI. Eur J Nucl Med Mol Imaging 2002;29:815–820.

    Article  PubMed  CAS  Google Scholar 

  31. Keiding S, Hansen SB, Rasmussen HH, et al. Detection of cholangiocarcinoma in primary sclerosing cholangitis by positron emission tomography. Hepatology 1998;28:700–706.

    Article  PubMed  CAS  Google Scholar 

  32. Anderson CA, Rice MH, Pinson CW, Chapman WC, Ravi RS, Delbeke D. FDG PET imaging in the evaluation of gallbladder carcinoma and cholangiocarcinoma. J. Gastrointest Surg 2004;8(1):90–97.

    Article  PubMed  Google Scholar 

  33. Kim YJ, Yun M, Lee WJ, Kim KS, Lee JD. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinomas. Eur J Nucl Med Mol Imaging 20034;30(11):1467–1472.

    Google Scholar 

  34. Drouard F, Delamarre J, Capron JP. Cutaneous seeding of gallbladder cancer after laparoscopic cholecystectomy. N Engl J Med 1991;325:1316.

    PubMed  CAS  Google Scholar 

  35. Weiss SM, Wengert PA, Harkavy SE. Incisional recurrence of gallbladder cancer aftyer laparoscopic cholecystectomy. Gastrointest Endosc 1994;40:244–246.

    Article  PubMed  CAS  Google Scholar 

  36. Hoh CK, Hawkins RA, Glaspy JA, et al. Cancer detection with whole-body PET using 2-[18F]fluoro-2-deoxy-D-glucose. J Comput Assist Tomogr 1993;17:582–589.

    PubMed  CAS  Google Scholar 

  37. Lomis KD, Vitola JV, Delbeke D, Snodgrass SL, Chapman WC, Wright JK, Pinson CW. Recurrent gallbladder carcinoma at laparoscopy port sites diagnosed by PET scan: implications for primary and radical second operations. Am Surg 1997;63:341–345.

    PubMed  CAS  Google Scholar 

  38. Gold EB, Goldin SB. Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 1998;7:67–91.

    PubMed  CAS  Google Scholar 

  39. Megibow AJ, Zhou XH, Rotterdam H, Francis IR, Zerhouni EA, Balfe DM, et al. Pancreatic adenocarcinoma: CT versus MR imaging in the evaluation of resectability: report of the Radiology Diagnostic Oncology Group. Radiology 1995;195(2):327–332.

    PubMed  CAS  Google Scholar 

  40. Diehl SJ, Lehman KJ, Sadick M, Lachman R, Georgi M. Pancreatic cancer: value of dual-phase helical CT in assessing resectability. Radiology 1998;206:373–378.

    PubMed  CAS  Google Scholar 

  41. Lu DSK, Reber HA, Krasny RM, Sayre J. Local staging of pancreatic cancer: criteria for unresectability of major vessels as revealed by pancreatic-phase, thin section helical CT. Am J Roentgenol 1997;168:1439–1444.

    CAS  Google Scholar 

  42. Johnson PT, Outwater EK. Pancreatic carcinoma versus chronic pancreatitis: dynamic MR imaging. Radiology. 1999;212(1):213–218.

    PubMed  CAS  Google Scholar 

  43. Lammer J, Herlinger H, Zalaudek G, Hofler H. Pseudotumorous pancreatitis. Gastrointest Radiol 1995;10:59–67.

    Article  Google Scholar 

  44. Bluemke DA, Cameron IL, Hurban RH, et al. Potentially resectable pancreatic adenocarcinoma: Spiral CT assessment with surgical and pathologic correlation. Radiology 1995;197:381–385.

    PubMed  CAS  Google Scholar 

  45. Bluemke DA, Fishman EK. CT and MR evaluation of pancreatic cancer. Surg Oncol Clin N Am 1998;7:103–124.

    PubMed  CAS  Google Scholar 

  46. Catalano C, Pavone P, Laghi A, et al. Pancreatic adenocarcinoma: combination of MR angiography and MR cholangiopancreatography for the diagnosis and assessment of resectability. Eur Radiol 1998;8:428–434.

    Article  PubMed  CAS  Google Scholar 

  47. Irie H, Honda H, Kaneko K, et al. Comparison of helical CT and MR imaging in detecting and staging small pancreatic adenocarcinoma. Abdom Imaging 1997;22:429–433.

    Article  PubMed  CAS  Google Scholar 

  48. Trede M, Rumstadt B, Wendl et al. Ultrafast magnetic resonance imaging improves the staging of pancreatic tumors. Ann Surg 1997;226:393–405.

    Article  PubMed  CAS  Google Scholar 

  49. Hawes RH, Zaidi S. Endoscopic ultrasonography of the pancreas. Gastrointest Endosc Clin N Am 1995;5:61–80.

    PubMed  CAS  Google Scholar 

  50. Legmann P, Vignaux O, Dousset B, et al. Pancreatic tumors: comparison of dual-phase helical CT and endoscopic sonography. Am J Roentgenol 1998;170:1315–1322.

    CAS  Google Scholar 

  51. Brandt KR, Charboneau JW, Stephens DH, Welch TJ, Goellner JR. CT-and US-guided biopsy of the pancreas. Radiology 1993;187:99–104.

    PubMed  CAS  Google Scholar 

  52. Chang KJ, Nguyen P, Erickson RA, et al. The clinical utility of endoscopic ultrasound-guided fine-needle aspiration in the diagnosis and staging of pancreatic carcinoma. Gastrointest Endosc 1997;45:387–393.

    Article  PubMed  CAS  Google Scholar 

  53. McGuire GE, Pitt HA, Lillemoe KD, et al. Reoperative surgery for periampullary adenocarcinoma. Arch Surg 1991;126:1205–1212.

    PubMed  CAS  Google Scholar 

  54. Tyler DS, Evans DB. Reoperative pancreaticoduodenectomy. Ann Surg 1994;219:211–221.

    PubMed  CAS  Google Scholar 

  55. Robinson EK, Lee JE, Lowy AM, et al. Reoperative pancreaticoduodenectomy for periampullary carcinoma. Am J Surg 1996;172:432–438.

    Article  PubMed  CAS  Google Scholar 

  56. Thompson JS, Murayama KM, Edney JA, Rikkers LF. Pancreaticoduodenectomy for suspected but unproven malignancy. Am J Surg 1994;168:571–575.

    Article  PubMed  CAS  Google Scholar 

  57. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 1987;235:1492–1495.

    Article  PubMed  CAS  Google Scholar 

  58. Monakhov NK, Neistadt EL, Shavlovskil MM, et al. Physiochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst 1978;61:27–34.

    PubMed  CAS  Google Scholar 

  59. Higashi T, Tamaki N, Honda T, et al. Expression of glucose transporters in human pancreatic tumors compared with increased F-18 FDG accumulation in PET study. J Nucl Med 1997;38:1337–1344.

    PubMed  CAS  Google Scholar 

  60. Reske S, Grillenberger KG, Glatting G, et al. Overexpression of glucose transporter 1 and increased F-18 FDG uptake in pancreatic carcinoma. J Nucl Med 1997;38:1344–1348.

    PubMed  CAS  Google Scholar 

  61. Gambir SS, Czernin J, Schimmer J, Silverman D, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med 2001;42(suppl):1S–93S.

    Google Scholar 

  62. Rose DM, Delbeke D, Beauchamp RD, Chapman WC, Sandler MP, Sharp KW, et al. 18Fluorodeoxyglucose-positron emission tomography (18FDG-PET) in the management of patients with suspected pancreatic cancer. Ann Surg 1998;229:729–738.

    Article  Google Scholar 

  63. Wahl RL, Henry CA, Ethrer SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 1992;183:643–647.

    PubMed  CAS  Google Scholar 

  64. Lindholm P, Minn H, Leskinen-Kallio S, et al. Influence of the blood glucose concentration on FDG uptake in cancer: a PET study. J Nucl Med 1993;34:1–6.

    PubMed  CAS  Google Scholar 

  65. Diederichs CG, Staib L, Glatting G, Beger HG, Reske SN. FDG PET: elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies. J Nucl Med 1998;39:1030–1033.

    PubMed  CAS  Google Scholar 

  66. Diederichs CG, Staib L, Vogel J, et al. Values and limitations of FDG PET with preoperative evaluations of patients with pancreatic masses. Pancreas 2000;20:109–116.

    Article  PubMed  CAS  Google Scholar 

  67. Stollfuss JC, Glatting G, Friess H, Kocher F, Berger HG, Reske SN. 2-(Fluorine-18)-fluoro-2-deoxy-D-glucose PET in detection of pancreatic cancer: value of quantitative image interpretation. Radiology 1995;195:339–344.

    PubMed  CAS  Google Scholar 

  68. Zimny M, Bares R, Faß J, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 1997;24:678–682.

    PubMed  CAS  Google Scholar 

  69. Ho CL, Dehdashti F, Griffeth LK, et al. FDG-PET evaluation of indeterminate pancreatic masses. Comput Assist Tomogr 1996;20:363–369.

    Article  CAS  Google Scholar 

  70. Friess H, Langhans J, Ebert M, et al. Diagnosis of pancreatic cancer by 2[F-18]-fluoro-2-deoxy-D-glucose positron emission tomography. Gut 1995;36:771–777.

    PubMed  CAS  Google Scholar 

  71. Delbeke D, Rose M, Chapman WC, Pinson CW, Wright JK, Beauchamp DR, Leach S. Optimal interpretation of F-18 FDG imaging of FDG PET in the diagnosis, staging and management of pancreatic carcinoma. J Nucl Med 1999;40:1784–1792.

    PubMed  CAS  Google Scholar 

  72. Shreve PD. Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 1998;25:259–264.

    Article  PubMed  CAS  Google Scholar 

  73. Nakata B, Chung YS, Nishimura S, et al. 18F-Fluorodeoxyglucose positron emission tomography and the prognosis of patients with pancreatic carcinoma. Cancer (Phila) 1997;79:695–699.

    Article  PubMed  CAS  Google Scholar 

  74. Zimny M, Fass J, Bares R, Cremerius U, Sabri O, Buechin P, Schumpelick V, Buell U. Fluorodeoxyglucose positron emission tomography and the prognosis of pancreatic carcinoma. Scand J Gastroenterol 2000;35:883–888.

    Article  PubMed  CAS  Google Scholar 

  75. Frolich A, Diederichs CG, Staib L, et al. Detection of liver metastases from pancreatic cancer using FDG PET. J Nucl Med 1999;40:250–255.

    Google Scholar 

  76. Kalady MF, Clary BM, Clark LA, Gottfried M, Rohren EM, Coleman RE, et al. Clinical utility of positron emission tomography in the diagnosis and management of periampullary neoplasms. Ann Surg Oncol 2002;9(8):799–806.

    Article  PubMed  Google Scholar 

  77. Yeung RS, Weese JL, Hoffman JP, Solin LJ, Paul AR, Engstrom PF, et al. Neoadjuvant chemoradiation in pancreatic and duodenal carcinoma. A Phase II Study. Cancer (Phila) 1993;72(7):2124–2133.

    Article  PubMed  CAS  Google Scholar 

  78. Jessup JM, Steele G Jr, Mayer RJ, Posner M, Busse P, Cady B, et al. Neoadjuvant therapy for unresectable pancreatic adenocarcinoma. Arch Surg 1993;128(5):559–564.

    PubMed  CAS  Google Scholar 

  79. Maisey NR, Webb A, Flux GD, Padhani A, Cunningham DC, Ott RJ, Norman A. FDG PET in the prediction of survival of patients with cancer of the pancreas: a pilot study. Br J Cancer 2000;83:287–293.

    Article  PubMed  CAS  Google Scholar 

  80. Franke C, Klapdor R, Meyerhoff K, Schauman M. 18-F positron emission tomography of the pancreas: diagnostic benefit in the follow-up of pancreatic carcinoma. Anticancer Res 1999;19:2437–2442.

    PubMed  CAS  Google Scholar 

  81. Kaltsas G, Rockall A, Papadogias D, Reznek R, Grossman AB. Recent advances in radiological and radionuclide imaging and therapy of neuroendocrine tumours. Eur J Endocrinol 2004;151(1):15–27.

    Article  PubMed  CAS  Google Scholar 

  82. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G. Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumors. Eur J Nucl Med 1998;25:79–83.

    Article  PubMed  CAS  Google Scholar 

  83. Jadvar H, Segall GM. False-negative fluorine-18-FDG PET in metastatic carcinoid. J Nucl Med 1997;38(9):1382–1383.

    PubMed  CAS  Google Scholar 

  84. Foidart-Willems J, Depas G, Vivegnis D, et al. Positron emission tomography and radiolabeled octreotide scintigraphy in carcinoid tumors. Eur J Nucl Med 1995;22:635.

    Google Scholar 

  85. Sundin A, Eriksson B, Bergstrom M, Langstrom B, Oberg K, Orlefors H. PET in the diagnosis of neuroendocrine tumors. Ann N Y Acad Sci. 2004;1014:246–257.

    Article  PubMed  CAS  Google Scholar 

  86. Eriksson B, Bergstrom M, Sundin A, et al. The role of PET in localization of neuroendocrine and adrenocortical tumors. Ann N Y Acad Sci 2002;970:159–169.

    Article  PubMed  CAS  Google Scholar 

  87. Bombardieri E, Maccauro M, De Deckere E, et al. Nuclear medicine imaging of neuroendocrine tumours. Ann Oncol 2001;12(suppl 2): S51–S61.

    Article  PubMed  Google Scholar 

  88. Hoegerle S, Altehoefer C, Ghanem N et al. Whole body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 2001;220(2):373–380.

    PubMed  CAS  Google Scholar 

  89. Anderson CJ, Dehdashti F, Cutler PD, et al. 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J Nucl Med 2001;42:213–221.

    PubMed  CAS  Google Scholar 

  90. Whiteford MH, Whiteford HM, Yee LF, Ogunbiyi OA, Dehdashti F, Siegel BA, et al. Usefulness of FDG-PET scan in the assessment of suspected metastatic or recurrent adenocarcinoma of the colon and rectum. Dis Colon Rectum 2000;43(6):759–767; discussion 767–770.

    Article  PubMed  CAS  Google Scholar 

  91. Ho CL, Dehdashti F, Griffeth LK, et al. FDG-PET evaluation of indeterminate pancreatic masses. Comput Assist Tomogr 1996;20:363–369.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Delbeke, D., Martin, W.H. (2006). PET and PET/CT Imaging in Tumors of the Pancreas and Liver. In: Valk, P.E., Delbeke, D., Bailey, D.L., Townsend, D.W., Maisey, M.N. (eds) Positron Emission Tomography. Springer, London . https://doi.org/10.1007/1-84628-187-3_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-187-3_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-971-5

  • Online ISBN: 978-1-84628-187-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics