Skip to main content

The Role of Stem Cells in Plastic Surgery

  • Chapter
Tissue Surgery

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 1))

  • 1050 Accesses

Abstract

Stem cell transplantation has become an increasingly important treatment for a wide variety of onco-hematological and metabolic disorders, Improvement in the therapeutic supplementation has reduced the incidence of severe and fatal side effects; however, complications still need to be minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobson LO, Marks EK, Robson MJ, et al. Effect of spleen protection on mortality following x-irradiation. J Lab Clin Med. 1949;34:1538–1543.

    Google Scholar 

  2. Lorenz E, Uphoff D, Reid TR, et al. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst. 1951;12:197–201.

    PubMed  CAS  Google Scholar 

  3. Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–222.

    Article  PubMed  CAS  Google Scholar 

  4. Smith LG, Weissman IL, Heimfeld S. Clonal analysis of hematopoietic stem-cell differentiation in vivo. Proc Natl Acad Sci USA. 1991;88:2788–2792.

    Article  PubMed  CAS  Google Scholar 

  5. Uchida N, Weissman IL. Searching for hematopoietic stem cells: evidence that Thy-1.1 low Lin-Sca-1 cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J Exp Med. 1992;175:175–184.

    Article  PubMed  CAS  Google Scholar 

  6. Andrews RG, Singer JW, Bernstein ID. Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. Blood. 1986;67:842–858.

    PubMed  CAS  Google Scholar 

  7. Baumhueter S, Dybdal N, Kyle C, et al. Global vascular expression of murine CD34, a sialomucin-like enodthelial ligand for L-selectin. Blood. 1994;84:2554–2561.

    PubMed  CAS  Google Scholar 

  8. Craig W, Kay R, Cutler RL, et al. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med. 1993;177:1331–1342.

    Article  PubMed  CAS  Google Scholar 

  9. Thomas ED, Storb R. Technique for human marrow grafting. Blood 1970;36:507–515.

    PubMed  CAS  Google Scholar 

  10. Areman EM, Deeg HJ, Sacher RA. Bone Marrow and Stem Cell Processing: A Manual of Current Techniques. Philadelphia: F.A. Davis & Co., 1992.

    Google Scholar 

  11. Kernan NA, Flomenberg N, Dupont B, et al. Graft rejection in recipients of T-cell-depleted HLA-nonidentical marrow transplants for leukemia. Transplantation. 1987;43:842–847.

    PubMed  CAS  Google Scholar 

  12. Fliedner TM, Steinbach KH. Repopulating potential of hematopoietic precursor cells. Blood Cells. 1988;14:393–410.

    PubMed  CAS  Google Scholar 

  13. Goldman JM, Th’ing KH, Park DS, et al. Collection, cryopreservation and subsequent viability of haemopoietic stem cells intended for treatment of chronic granulocytic leukemia in blast-cell transformation. Br J Haematol. 1978;40:185–188.

    PubMed  CAS  Google Scholar 

  14. Valdimarsson H, Moss PD, Holt PJ, Hobbs JR. Treatment of chronic mucocutaneous candidiasis with leucocytes from HL-A compatible sibling. Lancet. 1972;1:469–472.

    Article  PubMed  CAS  Google Scholar 

  15. McNiece IK, Stewart FM, Deacon DM, et al. Detection of a human CFC with a high proliferative potential. Blood. 1989;74:609–612.

    PubMed  CAS  Google Scholar 

  16. Demirer T, Buckner CD, Bensinger WI. Optimization of peripheral blood stem cell mobilization. Stem Cells. 1996;14(1):106–116.

    PubMed  CAS  Google Scholar 

  17. Hohaus S, Goldschmidt H, Ehrhardt R, et al. Successful autografting following myeloablative conditioning therapy with blood stem cells mobilized by chemotherapy plus RHG-CSF. Exp Hematol. 1993;21:4:508–514.

    PubMed  CAS  Google Scholar 

  18. Dreger P, Marquardt P, Haferlach T, et al. Effective mobilization of peripheral blood progenitor cells with Dexa-BEAM and G-CSF-timing of harvesting and composition of the leukapheresis product. Br J Cancer. 1993;68:5:950–957.

    PubMed  CAS  Google Scholar 

  19. Jagannath S, Vesole DH, Glenn L, Crowley J, Barlogie B. Low-risk intensive therapy for multiple myeloma with combined autologous bone marrow and blood stem cell support. Blood. 1992;80:1666–1672.

    PubMed  CAS  Google Scholar 

  20. Shpall EJ, Jones RB, Bearman SI, et al. Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral-blood progenitors and growth factors on engraftment. J Clin Oncol. 1994;12:28–36.

    PubMed  CAS  Google Scholar 

  21. Kawano Y, Takaue Y, Watanabe T, Saito S, Abe T, Hirao A, et al. Effects of progenitor cell dose and preleukapheresis use of human recombinant granulocyte colony-stimulating factor on the recovery of hematopoiesis after blood stem cell autografting in children. Exp Hematol. 1993;21:103–108.

    PubMed  CAS  Google Scholar 

  22. Storek J, Gooley T, Siadak M, Bensinger WI, Maloney DG, Chauncey TR, et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease. Blood. 1997;90(12):4705–4709.

    PubMed  CAS  Google Scholar 

  23. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, Demirer T, Sanders J, et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood. 1995;85:1655–1658.

    PubMed  CAS  Google Scholar 

  24. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Loffler H, et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood. 1995;85:1666–1672.

    PubMed  CAS  Google Scholar 

  25. Majolino I, Saglio G, Scime R, Serra A, Cavallaro AM, Fiandaca T, et al. High incidence of chronic GVHD after primary allogeneic peripheral blood stem cell transplantation in patients with hematologic malig-nancies. Bone Marrow Transplant. 1996;17:555–560.

    PubMed  CAS  Google Scholar 

  26. Korbling M, Huh YO, Durett A, et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and GVHD. Blood. 1995;86:2842–2848.

    PubMed  CAS  Google Scholar 

  27. Indovina A, Majolino I, Scime R, et al. High dose cyclophosphamide: stem cell mobilizing capacity in 21 patients. Leuk Lymphoma. 1994;14:1–2:71–77.

    Article  PubMed  CAS  Google Scholar 

  28. Bensinger WI, Price TH, Dale DC, et al. The effects of daily recombinant human granulocyte colony-stimulating factor administration on normal granulocyte donors undergoing leukapheresis. Blood. 1993;81:1883–1888.

    PubMed  CAS  Google Scholar 

  29. Korbling M, Champlin R. Peripheral blood progenitor cell transplantation: a replacement for marrow auto-or allografts. Stem Cells. 1996;14:185–195.

    PubMed  CAS  Google Scholar 

  30. Korbling M, Fliedner TM, Pflieger H. Collection of large quantaties of granulocyte macrophage progenitor cells (CFUc) in man by means of continuous-flow leukapheresis. Scand J Haematol. 1980;24:22–28.

    Article  PubMed  CAS  Google Scholar 

  31. Chao NJ, Schriber JR, Grimes K, et al. Granulocyte colony-stimulating factor “mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood. 1993;81:2031–2035.

    PubMed  CAS  Google Scholar 

  32. Ilhan O, Arslan Ö, Arat M, et al. The impact of the CD34+ cell dose on engraftment in allogeneic peripheral blood stem cell transplantation. Transfus Sci. 1999;20:69–71.

    Article  PubMed  CAS  Google Scholar 

  33. Runde V, de Witte T, Arnold R, et al. Bone marrow transplantation from HLA-identical siblings as first-line treatment in patients with myelodysplastic syndromes: early transplantation is associated with improved outcome. Bone Marrow Transp. 1998;21:255–261.

    Article  CAS  Google Scholar 

  34. Goldman JM. Modern approaches to the management of chronic granulocytic leukemia. Semin Hematol. 1978;15:420–430.

    PubMed  CAS  Google Scholar 

  35. To LB, Haylock DN, Simmons PJ, Juttner CA. The biology and clinical uses of blood stem cells. Blood. 1997;89(7):2233–2258.

    PubMed  CAS  Google Scholar 

  36. Taichman RS, Emerson SG. The role of osteoblasts in the hematopoietic microenvironment. Stem Cells. 1998;16(1):7–15.

    PubMed  CAS  Google Scholar 

  37. Briscoe DM, Dharnidharka VR, Isaacs C, et al. The allogeneic response to cultured human skin equivalent in the hu-PBL-SCID mouse model of skin rejection. Transplantation. 1999;67:1590–1599.

    Article  PubMed  CAS  Google Scholar 

  38. Wiles MV, Keller G. Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development. 1991;111(2):259–267.

    PubMed  CAS  Google Scholar 

  39. Slager HG, Van Inzen W, Freund E, Van den Eijnden-Van Raaij AJ, Mummery CL. Transforming growth factor-beta in the early mouse embryo: implications for the regulation of muscle formation and implantation. Dev Genet. 1993;14(3):212–224.

    Article  PubMed  CAS  Google Scholar 

  40. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292(5819):154–156.

    Article  PubMed  CAS  Google Scholar 

  41. Potocnik AJ, Kohler H, Eichmann K. Hemato-lymphoid in vivo reconstitution potential of subpopulations derived from in vitro differentiated embryonic stem cells. Proc Natl Acad Sci USA. 1997;94:10295–10300.

    Article  PubMed  CAS  Google Scholar 

  42. Lee SH, Lumelsky N, Studer L, et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol. 2000;18:675–679.

    Article  PubMed  CAS  Google Scholar 

  43. Klug MG, Soonpaa MH, Koh GY, et al. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J Clin Invest. 1996;98:216–224.

    Article  PubMed  CAS  Google Scholar 

  44. Ng WA, Doetschman T, Robbins J, et al. Muscle isoactin expression during in vitro differentiation of murine embryonic stem cells. Pediatr Res. 1997;41:285–292.

    Article  PubMed  CAS  Google Scholar 

  45. Strom TB, Field LJ, Ruediger M. Allogeneic stem Cells, clinical transplantation, and the origins of regenerative medicine. Curr Opin Immunol. 2002;14(5):601–605.

    Article  PubMed  CAS  Google Scholar 

  46. Gluckman E, Rocha V, Boyer-Chammard A, et al. Outcome of cord-blood transplantation from related and unrelated donors. N Engl J Med. 1997;337:373–281.

    Article  PubMed  CAS  Google Scholar 

  47. McCullough J, Herr G, Lennon S, et al. Factors influencing the availability of umbilical cord blood for banking and transplantation. Transfusion. 1998;38:508–510.

    Article  PubMed  CAS  Google Scholar 

  48. Donaldson C, Armitage WJ, Buchanan RM, et al. Obstetric factors influencing cord blood collections. Blood. 1998;92:121a.

    Google Scholar 

  49. Shlebak AA, Roberts IAG, Stevens TA, et al. The impact of antenatal and perinatal variables on cord blood haemopoietic stem/progenitor cell yield available for transplantation. Br J Haematol. 1998;103:1167–1171.

    Article  PubMed  CAS  Google Scholar 

  50. McCullough J, Herr G, Lennon S, et al. Factors influencing the availability of umbilical cord blood for banking and transplantation. Transfusion. 1998;38:508–510.

    Article  PubMed  CAS  Google Scholar 

  51. Broxmeyer HE, Douglas GW, Hangoc G, et al. Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci USA. 1989;86:3828–3832.

    Article  PubMed  CAS  Google Scholar 

  52. Gluckman E, Broxmeyer HE, Auerbach AD, et al. Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med. 1989;321:1174–1178.

    Article  PubMed  CAS  Google Scholar 

  53. Miller AD, Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986;6:2895–2902.

    PubMed  CAS  Google Scholar 

  54. Dunbar CE, Emmons RV. Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells. 1994;12:563–576.

    Article  PubMed  CAS  Google Scholar 

  55. Williams DA. Ex vivo expansion of hematopoietic stem and progenitor cells—robbing Peter to pay Paul. Blood. 1993;81:3169–3172.

    PubMed  CAS  Google Scholar 

  56. Bhatia M, Bonnet D, Kapp U, et al. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med. 1997;186:619–624.

    Article  PubMed  CAS  Google Scholar 

  57. Shimakura Y, Kawada H, Ando K, Sato T, Nakamura Y, Tsuji T, et al. Murine stromal cell line HESS-5 maintains reconstituting ability of ex vivo-generated hematopoietic stem cells from human bone marrow and cytokine-mobilized peripheral Blood. Stem Cells. 2000;18(3):183–189.

    Article  PubMed  CAS  Google Scholar 

  58. Hanazono Y, Terao K, Ozawa K. Gene transfer into non-human primate hematopoietic stem cells: implications for gene therapy. Stem Cells. 2001;19(1):12–23.

    Article  PubMed  CAS  Google Scholar 

  59. Kurre P, Kiem HP, Morris J, et al. Efficient transduction by an amphotropic retrovirus vector is dependent on the high-level expression of the cell surface virus receptor. J Virol. 1999;73:495–500.

    PubMed  CAS  Google Scholar 

  60. Brossart P, Wirths S, Brugger W, Kanz L. Dendritic cells in cancer vaccines. Exp Hematol. 2001;29:1247–1255.

    Article  PubMed  CAS  Google Scholar 

  61. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted mouse myocardium. Nature. 2001;410:701–705.

    Article  PubMed  CAS  Google Scholar 

  62. Ferrari G, Cusella-De Angelis G, Coletta M, et al. Muscle regeneration by bone marrow derived myogenic progenitors. Science. 1998;279:1528–1530.

    Article  PubMed  CAS  Google Scholar 

  63. Mezey E, Chandross K, Harta G, et al. Turning blood in brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–1782.

    Article  PubMed  CAS  Google Scholar 

  64. Lagasse E, Connors H, Al-Dhalimy M, et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 2000;6:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  65. Krause D, Theise N, Collector M, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369–377.

    Article  PubMed  CAS  Google Scholar 

  66. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–1402.

    PubMed  CAS  Google Scholar 

  67. Ringe J, Kaps C, Burmester GR, Sittinger M.. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89:338–51.

    Article  PubMed  CAS  Google Scholar 

  68. Vogel G. Can adult stem cells suffice? Science. 2001;292:1820–1822.

    Article  PubMed  CAS  Google Scholar 

  69. Bianco P, Riminucci M, Gronthos S, et al. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells. 2001;19:180–192.

    Article  PubMed  CAS  Google Scholar 

  70. Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA. 2000;97:3213–3218.

    Article  PubMed  CAS  Google Scholar 

  71. Campagnoli C, Roberts IAG, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98:2396–2402.

    Article  PubMed  CAS  Google Scholar 

  72. Tilney NL, Whitley WD, Diamond JR. Chronic rejection: an unidentified conundrum. Transplantation. 1991;52:389–398.

    Article  PubMed  CAS  Google Scholar 

  73. Dunn DL. Problems related to immunosuppression. Infection and malignancy occurring after solid organ transplantation. Crit Care Clin. 1990;6:955–957.

    PubMed  CAS  Google Scholar 

  74. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147.

    Article  PubMed  CAS  Google Scholar 

  75. Rao MS, Mattson MP. Stem cells and aging: expanding the possibilities. Mech Ageing Dev. 2001;122:713–734.

    Article  PubMed  CAS  Google Scholar 

  76. Lee WP, Yaremchuk MJ, Pan YC, Randolph MA, Tan CM, Weiland AJ. Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg. 1991;87(3):401–411.

    Article  PubMed  CAS  Google Scholar 

  77. Benhaim P, Anthony JP, Ferreira L, Borsanyi JP, Mathes SJ. Use of combination of low-dose cyclosporine and RS-61443 in a rat hind limb model of composite tissue allotransplantation. Transplantation. 1996;61(4):527–532.

    Article  PubMed  CAS  Google Scholar 

  78. Foster RD, Ascher NL, McCalmont TH, Neipp M, Anthony JP, Mathes SJ. Mixed allogeneic chimerism as a reliable model for composite tissue allograft tolerance induction across major and minor histocompatibility barriers. Transplantation. 2001;72(5):791–797.

    Article  PubMed  CAS  Google Scholar 

  79. Sachs DH. Mixed chimerism as an approach to transplantation tolerance. Clin Immunol. 2000;95(1 Pt 2):63–68.

    Article  Google Scholar 

  80. Fuchimoto Y, Yamada K, Shimizu A, Yasumoto A, Sawada T, Huang CH, et al. Relationship between chimerism and tolerance in a kidney transplantation model. J Immunol. 1999;162(10):5704–5711.

    PubMed  CAS  Google Scholar 

  81. Siemionow M, Zielinski M, Ozmen S, Izycki D, Ozer K. Intraosseus injection of the donor-derived bone marrow stem and progenitor cells increase donor-specific chimerism and extends composite tissue allograft survival. Transplant Proc. In press.

    Google Scholar 

  82. Siemionow MZ, Izycki DM, Zielinski M. Donor-specific tolerance in fully major histocompatibility major histocompatibility complex-mismatched limb allograft transplants under an anti-alphabeta T-cell receptor monoclonal antibody and cyclosporine A protocol. Transplantation. 2003;76(12):1662–1668.

    Article  PubMed  CAS  Google Scholar 

  83. Takagi K, Urist MR. The role of bone marrow in bone morphogenetic protein-induced repair of femoral massive diaphyseal defects. Clin Orthop Relat Res. 1982;(171):224–231.

    PubMed  Google Scholar 

  84. Carsin H, Ainaud P, Le Bever H, Rives J, Lakhel A, Stephanazzi J, et al. Cultured epithelial autografts in extensive burn coverage of severely traumatized patients: a five year single-center experience with 30 patients. Burns. 2000;26:379–387.

    Article  PubMed  CAS  Google Scholar 

  85. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-Asuppl 2:17–24.

    PubMed  Google Scholar 

  86. Tran N, Li Y, Bertrand S, Bangratz S, Carteaux JP, Stoltz JF, et al. Autologous cell transplantation and cardiac tissue engineering: potential applications in heart failure. Biorheology. 2003;40:411–415.

    PubMed  Google Scholar 

  87. Binder S, Stolba U, Krebs I, Kellner L, Jahn C, Feichtinger H, et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol. 2002;133:215–225.

    Article  PubMed  Google Scholar 

  88. Cheng B, Chen Z. Fabricating autologous tissue to engineer artificial nerve. Microsurgery. 2002;22:133–137.

    Article  PubMed  Google Scholar 

  89. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7:259–264.

    Article  PubMed  CAS  Google Scholar 

  90. Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000;49:328–337.

    Article  PubMed  CAS  Google Scholar 

  91. Grzesik WJ, Cheng H, Oh JS, Kuznetsov SA, Mankani MH, Uzawa K, et al. Cementum-forming cells are phenotypically distinct from bone-forming cells. J Bone Miner Res. 2000;15(1):52–59.

    Article  PubMed  CAS  Google Scholar 

  92. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76:579–592.

    PubMed  CAS  Google Scholar 

  93. Lee HS, Huang GT, Chiang H, Chiou LL, Chen MH, Hsieh CH, et al. Multipotential mesenchymal stem cells from femoral bone marrow near the site of osteonecrosis. Stem Cells. 2003;21:190–199.

    Article  PubMed  CAS  Google Scholar 

  94. Cairo MS, Wagner JE. Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation. Blood. 1997;90:4665–4678

    PubMed  CAS  Google Scholar 

  95. Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, et al. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J Biomed Mater Res. 2000;51:233–240.

    Article  PubMed  CAS  Google Scholar 

  96. Pfendler KC, Kawase E. The potential of stem cells. Obstet Gynecol Sur. 2003;58(3):197–208.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Siemionow, M.Z., Özmen, S. (2006). The Role of Stem Cells in Plastic Surgery. In: Siemionow, M.Z. (eds) Tissue Surgery. New Techniques in Surgery Series, vol 1. Springer, London. https://doi.org/10.1007/1-84628-128-8_12

Download citation

  • DOI: https://doi.org/10.1007/1-84628-128-8_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-970-8

  • Online ISBN: 978-1-84628-128-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics