Skip to main content

Tissue Engineering: Current Approaches and Future Directions

  • Chapter
Tissue Surgery

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 1))

  • 1070 Accesses

Abstract

Tissue engineering marries the fields of engineering and life sciences with the goal of fashioning biomimetic materials to augment, restore, or maintain biologic systems after damage by disease or injury. That is, tissue engineering seeks replicate the functions usually performed by the body’s organs; a goal sometimes referred to as “the missing organ problem.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yannas IV. The missing organ and how to replace it. In: Tissue and Organ Regeneration in Adults. Yannas, IV, author. New York: Springer-Verlag, 2001.

    Google Scholar 

  2. Walgenbach KJ, Voigt M, Riabikhin AW, et al. Tissue engineering in plastic reconstructive surgery. Anatomic Rec. 2001;263:372–378.

    Article  CAS  Google Scholar 

  3. Vats S, Tolley NS, Polak J., et al. Stem cells: sources and applications. Clin Otolaryngol. 2002;27:227–232.

    Article  PubMed  CAS  Google Scholar 

  4. Thompson JA, Itskovitz-Eldor J, Shapiro SS. Embryonic stem cells derived from human blastocysts. Science. 1998;282:1142–1145.

    Article  Google Scholar 

  5. Matsui Y, Zsebo K, Hogan BL. Derivation of pluripotent embryonic stem cells from murine primordial germ cells in culture. Cell. 1002;70:841–847.

    Article  Google Scholar 

  6. Henningson CT, Stanislaus MA, Gerwirtz AM. Embryonic and adult stem cell therapy. J Allergy Clin Immunol. 2003;111:S745–753.

    Article  PubMed  Google Scholar 

  7. Korbling M, Estrov Z, Champlin R. Adult stem cells and tissue repair. Bone Marrow Transplant. 2003;32:S23–24.

    Article  PubMed  CAS  Google Scholar 

  8. Petersen BE, Terada N. Stem cells: a journey into a new frontier. J Am Soc Nephrol. 2001;12:1773–1780.

    PubMed  CAS  Google Scholar 

  9. Ringe J, Kaps C, Burmester GR, Sittinger M. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften. 2002;89:338–351.

    Article  PubMed  CAS  Google Scholar 

  10. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21th century. Trends Molec Med. 2001;7:259–265.

    Article  CAS  Google Scholar 

  11. Passier R, Mummery C. Origin and use of embryonic and adult stem cells in differentiation and tissue repair. Cardiovasc Res. 2003;58:324–335.

    Article  PubMed  CAS  Google Scholar 

  12. Drukker M, Katz G, Urbach A. Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA. 2002;99:9864–9869.

    Article  PubMed  CAS  Google Scholar 

  13. Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 200;287:1427–1430.

    Google Scholar 

  14. Mahoney MJ, Saltzman WM. Transplantation of brain cells assembled around a programmable synthetic microenvironment. Nature Biotech. 2001;19:934–939.

    Article  CAS  Google Scholar 

  15. Breuls RGM, Mol A, Petterson R, Oomens CWJ, Baaijens FPT, Bouten CVC. Monitoring local cell viability in engineered tissues: a fast, quantitative and non destructive approach. Tissue Eng. 2003;9:269–281.

    Article  PubMed  Google Scholar 

  16. Piskin E. Biodegradable polymeric matrices for bioartificial implants. Int J Artif Organ. 2002;25:434–440.

    CAS  Google Scholar 

  17. Benya PD, Scaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982;30:215–224.

    Article  PubMed  CAS  Google Scholar 

  18. Hollister SJ, Maddox RD Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials. 2002;23:4095–4103.

    Article  PubMed  CAS  Google Scholar 

  19. Lu L, Zhu X, Valenzuela RG, Currier BL, Yaszemski MJ. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin Orthop Rel Res. 2001;391S:S251–270.

    Google Scholar 

  20. Voytik-harbin SL, Roeder BA, Sturgis JE, Kokini K, Robinson JP. Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microscop Microanal. 2003;9:74–85.

    Article  CAS  Google Scholar 

  21. Marques AP, Reis RL, Hunt JA. The biocompatibility of novel starch-based polymers and composites: in-vitro studies. Biomaterials. 2002;23:1471–1478.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Ni M, Zhang M, Ratner B. Calcium phosphatechitosan composite scaffolds for bone tissue engineering. Tissue Eng. 2003;9:337–345.

    Article  PubMed  CAS  Google Scholar 

  23. Kast CE, Frick W, Losert U, Bernkop-Schnurch A. Chitosan-thioglycolic acid conjugate: a new scaffold material for tissue engineering? Int J Pharma. 2003;256:183–189.

    Article  CAS  Google Scholar 

  24. Gentleman E, Lay AN, Dickerson DA, Nauman EA, Livesay GA, Dee KC. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials. 2003;24:3805–3813.

    Article  PubMed  CAS  Google Scholar 

  25. Pieper JS, Van Der Kraan PM, et al. Crosslinked type II collagen matrices: preparation, characterization and potential for cartilage engineering. Biomaterials. 2002;23:3183–3192.

    Article  PubMed  CAS  Google Scholar 

  26. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials. 2003;24:1487–1497.

    Article  PubMed  CAS  Google Scholar 

  27. Griffith LG. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann NY Acad Sci. 2002;961:83–95.

    Article  PubMed  CAS  Google Scholar 

  28. Wang YC, Lin MC, Wang DM, Hsieh HJ. Fabrication of a novel porous PGA chitosan hybrid matrix for tissue engineering. Biomaterials. 2003;24:1047–1057.

    Article  PubMed  CAS  Google Scholar 

  29. Leonor IB, Ito A, Onuma K, Kanzaki N, Reis RL. In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials: an in situ study using atomic force microscopy. Biomaterials. 2003;24:579–585.

    Article  PubMed  CAS  Google Scholar 

  30. Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anatom Rec. 2001;263:342–349.

    Article  CAS  Google Scholar 

  31. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002; 23:4307–14.

    Article  PubMed  CAS  Google Scholar 

  32. Cao YL, Ibarra C, Vacanti C. Preparation and Use of Thermosensitive Polymers. In: Tissue Engineering: Methods and Protocols. Totowa NJ: Humana Press, 1999.

    Google Scholar 

  33. Vacanti CA, Langer R, Schloo B, Vacanti JP. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconst Surg. 1991;95:843–850.

    Google Scholar 

  34. Lutolf MP, Lauer-Fields JL, Schmoekel HG, et al. Synthetic matrix mettaloproteinse-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Nat Acad Sci. 2003;100:5413–548.

    Article  PubMed  CAS  Google Scholar 

  35. Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials. 2002;23:4325–4332.

    Article  PubMed  CAS  Google Scholar 

  36. Parsons JT, Martin KH, Slack JK, Taylor, JM, Weed SA. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene. 2000;19:5606–5613.

    Article  PubMed  CAS  Google Scholar 

  37. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9:180–186.

    Article  PubMed  CAS  Google Scholar 

  38. Putney JW. PLC-gamma: an old player has a new role. Nat Cell Biol. 2002;4:E280–281.

    Article  PubMed  CAS  Google Scholar 

  39. Bottaro DP, Liebmann-Vinson A, Heidaran MA. Molecular signaling in bioengineered tissue microenvironments. Ann NY Acad Sci. 2002;961:143–153.

    PubMed  CAS  Google Scholar 

  40. Hojo S, Inokuchi S, Kidokoro M, et al. Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast Reconst Surg. 2003;111:1638–1645.

    Article  PubMed  Google Scholar 

  41. Meaney Murray M, Rice K, Wright RJ, Spector M. The effect of selected growth factors on human anterior cruciate ligament cell interactions with a three-dimensional collagen GAG scaffold. J Orthop Res. 2003;2:238–244.

    Article  Google Scholar 

  42. Pei M, Seidel J, Vunjak-Novakovic G, Freed LE. Growth factors for sequential cellular de-and re-differentiation in tissue engineering. Biochem Biophys Res Com. 2002;294:149–154.

    Article  PubMed  CAS  Google Scholar 

  43. Elisseeff J, McIntosh W, Fu K, Blunk BT, Langer R. Controlled-release of IGF-1 and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001;19:1098–1104.

    Article  PubMed  CAS  Google Scholar 

  44. Lysaght MJ, Reyes J. The growth of tissue engineering. Tissue Eng. 2001;7:485–490.

    Article  PubMed  CAS  Google Scholar 

  45. McIntire LV. World technology panel report on tissue engineering. Ann Biomed Eng. 2002;30:1216–1220.

    Article  PubMed  Google Scholar 

  46. Naughton GK. From lab bench to market: critical issues in tissue engineering. Ann NY Acad Sci. 2002;961:372–385.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag London Limited

About this chapter

Cite this chapter

Ajar, A.H., Evans, G.R. (2006). Tissue Engineering: Current Approaches and Future Directions. In: Siemionow, M.Z. (eds) Tissue Surgery. New Techniques in Surgery Series, vol 1. Springer, London. https://doi.org/10.1007/1-84628-128-8_11

Download citation

  • DOI: https://doi.org/10.1007/1-84628-128-8_11

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-970-8

  • Online ISBN: 978-1-84628-128-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics