Skip to main content

Clinical Disorders Associated with Alterations in Bone Resorption

  • Chapter
Bone Resorption

Part of the book series: Topics in Bone Biology ((TBB,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe E, Marians RC, Yu W, Wu XB, Ando T, Li Y, et al. (2003) TSH is a negative regulator of skeletal remodeling. Cell 115:151–62.

    Article  PubMed  CAS  Google Scholar 

  2. Adams JS, Wahl TO, Lukert BP (1981) Effects of hydrochlorothiazide and dietary sodium restriction on calcium metabolism in corticosteroid treated patients. Metabolism 30:217–21.

    Article  PubMed  CAS  Google Scholar 

  3. Andersen PE, Jr., Bollerslev J (1987) Heterogeneity of autosomal dominant osteopetrosis. Radiology 164:223–5.

    PubMed  Google Scholar 

  4. Bakwin H, Golden A, Fox S (1964) Familial Osteoectasia with Macrocranium. Am J Roentgenol Radium Ther Nucl Med 91:609–17.

    PubMed  CAS  Google Scholar 

  5. Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre-and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13:1805–13.

    Article  PubMed  CAS  Google Scholar 

  6. Beamer WG, Donahue LR, Rosen CJ, Baylink DJ (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403.

    Article  PubMed  CAS  Google Scholar 

  7. Benichou O, Cleiren E, Gram J, Bollerslev J, de Vernejoul MC, Van Hul W (2001) Mapping of autosomal dominant osteopetrosis type II (Albers-Schonberg disease) to chromosome 16p13.3. Am J Hum Genet 69:647–54.

    Article  PubMed  CAS  Google Scholar 

  8. Benichou OD, Laredo JD, de Vernejoul MC (2000) Type II autosomal dominant osteopetrosis (Albers-Schonberg disease): clinical and radiological manifestations in 42 patients. Bone 26:87–93.

    Article  PubMed  CAS  Google Scholar 

  9. Bilezikian JP, Silverberg SJ (2004) Clinical practice. Asymptomatic primary hyperparathyroidism. N Engl J Med 350:1746–51.

    Article  PubMed  CAS  Google Scholar 

  10. Bollerslev J, Andersen PE, Jr. (1988) Radiological, biochemical and hereditary evidence of two types of autosomal dominant osteopetrosis. Bone 9:7–13.

    Article  PubMed  CAS  Google Scholar 

  11. Bollerslev J, Mosekilde L (1993) Autosomal dominant osteopetrosis. Clin Orthop. 45–51.

    Google Scholar 

  12. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346:1513–21.

    Article  PubMed  CAS  Google Scholar 

  13. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366:575–80.

    Article  PubMed  CAS  Google Scholar 

  14. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–8.

    Article  PubMed  CAS  Google Scholar 

  15. Budden SS, Gunness ME (2003) Possible mechanisms of osteopenia in Rett syndrome: bone histomorphometric studies. J Child Neurol 18:698–702.

    Article  PubMed  Google Scholar 

  16. Caffey J (1972) Familial hyperphosphatasemia with ateliosis and hypermetabolism of growing membranous bone; review of the clinical, radiographic and chemical features. Bull Hosp Joint Dis 33:81–110.

    PubMed  CAS  Google Scholar 

  17. Canalis E (1996) Clinical review 83: Mechanisms of glucocorticoid action in bone: implications to glucocorticoid-induced osteoporosis. J Clin Endocrinol Metab 81:3441–7.

    Article  PubMed  CAS  Google Scholar 

  18. Cenci S, Weitzmann MN, Roggia C, Namba N, Novack D, Woodring J, et al. (2000) Estrogen deficiency induces bone loss by enhancing T-cell production of TNF-alpha. J Clin Invest 106:1229–37.

    Article  PubMed  CAS  Google Scholar 

  19. Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, et al. (2003) Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406.

    Article  PubMed  CAS  Google Scholar 

  20. Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR, et al. (1997) Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 276:404–7.

    Article  PubMed  CAS  Google Scholar 

  21. Cleiren E, Benichou O, Van Hul E, Gram J, Bollerslev J, Singer FR, et al. (2001) Albers-Schonberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene. Hum Mol Genet 10:2861–7.

    Article  PubMed  CAS  Google Scholar 

  22. Croucher PI, Shipman CM, Lippitt J, Perry M, Asosingh K, Hijzen A, et al. (2001) Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood 98:3534–40.

    Article  PubMed  CAS  Google Scholar 

  23. Cundy T, Hegde M, Naot D, Chong B, King A, Wallace R, et al. (2002) A mutation in the gene TNFRSF11B encoding osteoprotegerin causes an idiopathic hyperphosphatasia phenotype. Hum Mol Genet 11:2119–27.

    Article  PubMed  CAS  Google Scholar 

  24. Cushing H (1932) The basophil adenomas of the pituitary body and their clinical manifestation. Johns Hopkins Bull 50:137–60.

    Google Scholar 

  25. Devlin RD, Bone HG, 3rd, Roodman GD (1996) Interleukin-6: a potential mediator of the massive osteolysis in patients with Gorham-Stout disease. J Clin Endocrinol Metab 81:1893–7.

    Article  PubMed  CAS  Google Scholar 

  26. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–30.

    Article  PubMed  CAS  Google Scholar 

  27. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13:688–700.

    Article  PubMed  CAS  Google Scholar 

  28. Fischer A, Griscelli C, Friedrich W, Kubanek B, Levinsky R, Morgan G, et al. (1986) Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968–1985. Lancet 2:1080–4.

    Article  PubMed  CAS  Google Scholar 

  29. Frattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, et al. (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–6.

    Article  PubMed  CAS  Google Scholar 

  30. Friedrichs WE, Reddy SV, Bruder JM, Cundy T, Cornish J, Singer FR, et al. (2002) Sequence analysis of measles virus nucleocapsid transcripts in patients with Paget’s disease. J Bone Miner Res 17:145–51.

    Article  PubMed  CAS  Google Scholar 

  31. Gagel RF (1997) Multiple endocrine neoplasia type II and familial medullary thyroid carcinoma. Impact of genetic screening on management. Cancer Treat Res 89:421–41.

    PubMed  CAS  Google Scholar 

  32. Garnero P, Sornay-Rendu E, Chapuy MC, Delmas PD (1996) Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11:337–49.

    PubMed  CAS  Google Scholar 

  33. Gelb BD, Edelson JG, Desnick RJ (1995) Linkage of pycnodysostosis to chromosome 1q21 by homozygosity mapping. Nat Genet 10:235–7.

    Article  PubMed  CAS  Google Scholar 

  34. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 273:1236–8.

    Article  PubMed  CAS  Google Scholar 

  35. Glass DA, 2nd, Patel MS, Karsenty G (2003) A new insight into the formation of osteolytic lesions in multiple myeloma. N Engl J Med 349:2479–80.

    Article  PubMed  CAS  Google Scholar 

  36. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. (2001) LDL Receptor-Related Protein 5 (LRP5) Affects Bone Accrual and Eye Development. Cell 107:513–23.

    Article  PubMed  CAS  Google Scholar 

  37. Gorham LW, Stout AP (1955) Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone); its relation to hemangiomatosis. J Bone Joint Surg Am 37-A:985–1004.

    PubMed  CAS  Google Scholar 

  38. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, et al. (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–63.

    Article  PubMed  CAS  Google Scholar 

  39. Greenfield EM, Bi Y, Miyauchi A (1999) Regulation of osteoclast activity. Life Sci 65:1087–102.

    Article  PubMed  CAS  Google Scholar 

  40. Greenspan SL, Greenspan FS (1999) The effect of thyroid hormone on skeletal integrity. Ann Intern Med 130:750–8.

    PubMed  CAS  Google Scholar 

  41. Gronowicz G, McCarthy MB, Raisz LG (1990) Glucocorticoids stimulate resorption in fetal rat parietal bones in vitro. J Bone Miner Res 5:1223–30.

    PubMed  CAS  Google Scholar 

  42. Hagberg B (1995) Rett syndrome: clinical peculiarities and biological mysteries. Acta Paediatr 84:971–6.

    Article  PubMed  CAS  Google Scholar 

  43. Hakola HP, Iivanainen M (1973) A new hereditary disease with progressive dementia and polycystic osteodysplasia: neuroradiological analysis of seven cases. Neuroradiology 6:162–8.

    Article  PubMed  CAS  Google Scholar 

  44. Ho N, Punturieri A, Wilkin D, Szabo J, Johnson M, Whaley J, et al. (1999) Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res 14:1649–53.

    Article  PubMed  CAS  Google Scholar 

  45. Hocking LJ, Lucas GJ, Daroszewska A, Mangion J, Olavesen M, Cundy T, et al. (2002) Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget’s disease. Hum Mol Genet 11:2735–9.

    Article  PubMed  CAS  Google Scholar 

  46. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140:4367–70.

    Article  PubMed  CAS  Google Scholar 

  47. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. (2000) Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet 24:45–8.

    Article  PubMed  CAS  Google Scholar 

  48. Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF (1996) Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nat Med. 2:1132–6.

    Article  PubMed  CAS  Google Scholar 

  49. Ikeda T, Utsuyama M, Hirokawa K (2001) Expression profiles of receptor activator of nuclear factor kappaB ligand, receptor activator of nuclear factor kappaB, and osteoprotegerin messenger RNA in aged and ovariectomized rat bones. J Bone Miner Res 16:1416–25.

    Article  PubMed  CAS  Google Scholar 

  50. Iqbal AA, Burgess EH, Gallina DL, Nanes MS, Cook CB (2003) Hypercalcemia in hyperthyroidism: patterns of serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis. Endocr Pract 9:517–21.

    PubMed  Google Scholar 

  51. Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, et al. (2000) Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet 26:273–5.

    Article  PubMed  CAS  Google Scholar 

  52. Janssens K, Van Hul W (2002) Molecular genetics of too much bone. Hum Mol Genet 11:2385–93.

    Article  PubMed  CAS  Google Scholar 

  53. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporos Int 7:390–406.

    Article  PubMed  CAS  Google Scholar 

  54. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA, 2nd, et al. (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 157:303–14.

    Article  PubMed  CAS  Google Scholar 

  55. Kimble RB, Srivastava S, Ross FP, Matayoshi A, Pacifici R (1996) Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1and tumor necrosis factor-mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem 271:28890–7.

    Article  PubMed  CAS  Google Scholar 

  56. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, et al. (2000) Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet 26:19–20.

    Article  PubMed  CAS  Google Scholar 

  57. Klein RF, Allard J, Avnur Z, Nikolcheva T, Rotstein D, Carlos AS, et al. (2004) Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 303:229–32.

    Article  PubMed  CAS  Google Scholar 

  58. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, et al. (2004) Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428:758–63.

    Article  PubMed  CAS  Google Scholar 

  59. Kornak U, Kasper D, Bosl MR, Kaiser E, Schweizer M, Schulz A, et al. (2001) Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–15.

    Article  PubMed  CAS  Google Scholar 

  60. Kornak U, Schulz A, Friedrich W, Uhlhaas S, Kremens B, Voit T, et al. (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–63.

    Article  PubMed  CAS  Google Scholar 

  61. Laitala T, Vaananen HK (1994) Inhibition of bone resorption in vitro by antisense RNA and DNA molecules targeted against carbonic anhydrase II or two subunits of vacuolar H(+)-ATPase. J Clin Invest 93:2311–8.

    Article  PubMed  CAS  Google Scholar 

  62. Lanyon L, Skerry T (2001) Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res 16:1937–47.

    Article  PubMed  CAS  Google Scholar 

  63. Laughlin MH, Welshons WV, Sturek M, Rush JW, Turk JR, Taylor JA, et al. (2003) Gender, exercise training, and eNOS expression in porcine skeletal muscle arteries. J Appl Physiol 95:250–64.

    PubMed  CAS  Google Scholar 

  64. Lazner F, Gowen M, Pavasovic D, Kola I (1999) Osteopetrosis and osteoporosis: two sides of the same coin. Hum Mol Genet 8:1839–46.

    Article  PubMed  CAS  Google Scholar 

  65. Leach RJ, Singer FR, Roodman GD (2001) The genetics of Paget’s disease of the bone. J Clin Endocrinol Metab 86:24–8.

    Article  PubMed  CAS  Google Scholar 

  66. Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L (2003) Endocrinology: bone adaptation requires oestrogen receptor-alpha. Nature 424:389.

    Article  PubMed  CAS  Google Scholar 

  67. Lee S, Finn L, Sze RW, Perkins JA, Sie KC (2003) Gorham Stout syndrome (disappearing bone disease): two additional case reports and a review of the literature. Arch Otolaryngol Head Neck Surg 129:1340–3.

    Article  PubMed  Google Scholar 

  68. Lee SK, Lorenzo JA (1999) Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology 140:3552–61.

    Article  PubMed  CAS  Google Scholar 

  69. Leonard H, Thomson M, Glasson E, Fyfe S, Leonard S, Ellaway C, et al. (1999) Metacarpophalangeal pattern profile and bone age in Rett syndrome: further radiological clues to the diagnosis. Am J Med Genet 83:88–95.

    Article  PubMed  CAS  Google Scholar 

  70. Lewis SE, Erickson RP, Barnett LB, Venta PJ, Tashian RE (1988) N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: an animal model for human carbonic anhydrase II deficiency syndrome. Proc Natl Acad Sci USA 85:1962–6.

    Article  PubMed  CAS  Google Scholar 

  71. Li YP, Chen W, Stashenko P (1996) Molecular cloning and characterization of a putative novel human osteoclast-specific 116-kDa vacuolar proton pump subunit. Biochem Biophys Res Commun 218:813–21.

    Article  PubMed  CAS  Google Scholar 

  72. Little RD, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70:11–9.

    Article  PubMed  CAS  Google Scholar 

  73. Manolagas SC, Kousteni S, Jilka RL (2002) Sex steroids and bone. Recent Prog Horm Res 57:385–409.

    Article  PubMed  CAS  Google Scholar 

  74. Maroteaux P, Lamy M (1965) The Malady of Toulouse-Lautrec. Jama 191:715–7.

    PubMed  CAS  Google Scholar 

  75. Marx SJ, Agarwal SK, Heppner C, Kim YS, Kester MB, Goldsmith PK, et al. (1999) The gene for multiple endocrine neoplasia type 1: recent findings. Bone 25:119–22.

    Article  PubMed  CAS  Google Scholar 

  76. McGowan NW, MacPherson H, Janssens K, Van Hul W, Frith JC, Fraser WD, et al. (2003) A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati-Engelmann disease enhances osteoclast formation in vitro. J Clin Endocrinol Metab 88:3321–6.

    Article  PubMed  CAS  Google Scholar 

  77. McMahon C, Will A, Hu P, Shah GN, Sly WS, Smith OP (2001) Bone marrow transplantation corrects osteopetrosis in the carbonic anhydrase II deficiency syndrome. Blood 97:1947–50.

    Article  PubMed  CAS  Google Scholar 

  78. Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A, Sakuma Y, et al. (2002) A novel interaction between thyroid hormones and 1,25(OH)(2)D(3) in osteoclast formation. Biochem Biophys Res Commun 291:987–94.

    Article  PubMed  CAS  Google Scholar 

  79. Montecucco C, Caporali R, Caprotti P, Caprotti M, Notario A (1992) Sex hormones and bone metabolism in postmenopausal rheumatoid arthritis treated with two different glucocorticoids. J Rheumatol 19:1895–900.

    PubMed  CAS  Google Scholar 

  80. Motil KJ, Schultz R, Brown B, Glaze DG, Percy AK (1994) Altered energy balance may account for growth failure in Rett syndrome. J Child Neurol 9:315–9.

    Article  PubMed  CAS  Google Scholar 

  81. Nasu T, Tsukahara Y, Terayama K (1973) A lipid metabolic disease-“membranous lipodystrophy”-an autopsy case demonstrating numerous peculiar membrane-structures composed of compound lipid in bone and bone marrow and various adipose tissues. Acta Pathol Jpn 23:539–58.

    PubMed  CAS  Google Scholar 

  82. Niida S, Kaku M, Amano H, Yoshida H, Kataoka H, Nishikawa S, et al. (1999) Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption. J Exp Med 190:293–8.

    Article  PubMed  CAS  Google Scholar 

  83. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–41.

    Article  PubMed  CAS  Google Scholar 

  84. Osterberg PH, Wallace RG, Adams DA, Crone RS, Dickson GR, Kanis JA, et al. (1988) Familial expansile osteolysis. A new dysplasia. J Bone Joint Surg Br 70:255–60.

    PubMed  CAS  Google Scholar 

  85. Pacifici R (1996) Estrogen, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–51.

    Article  PubMed  CAS  Google Scholar 

  86. Paloneva J, Mandelin J, Kiialainen A, Bohling T, Prudlo J, Hakola P, et al. (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669–75.

    Article  PubMed  CAS  Google Scholar 

  87. Paloneva J, Manninen T, Christman G, Hovanes K, Mandelin J, Adolfsson R, et al. (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–62.

    Article  PubMed  CAS  Google Scholar 

  88. Pearse RN, Sordillo EM, Yaccoby S, Wong BR, Liau DF, Colman N, et al. (2001) Multiple myeloma disrupts the TRANCE/osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progression. Proc Natl Acad Sci USA 98:11581–6.

    Article  PubMed  CAS  Google Scholar 

  89. Pekkarinen P, Kestila M, Paloneva J, Terwillign J, Varilo T, Jarvi O, et al. (1998) Fine-scale mapping of a novel dementia gene, PLOSL, by linkage disequilibrium. Genomics. 54:307–15.

    Article  PubMed  CAS  Google Scholar 

  90. Piek E, Heldin CH, Ten Dijke P (1999) Specificity,diversity, and regulation in TGF-beta superfamily signaling. Faseb J 13:2105–24.

    PubMed  CAS  Google Scholar 

  91. Ralston SH (1997) The Michael Mason Prize Essay 1997. Nitric oxide and bone: what a gas! Br J Rheumatol 36:831–8.

    Article  PubMed  CAS  Google Scholar 

  92. Rantakokko J, Aro HT, Savontaus M, Vuorio E (1996) Mouse cathepsin K: cDNA cloning and predominant expression of the gene in osteoclasts, and in some hypertrophying chondrocytes during mouse development. FEBS Lett 393:307–13.

    Article  PubMed  CAS  Google Scholar 

  93. Reddy SV, Kurihara N, Menaa C, Roodman GD (2001) Paget’s disease of bone: a disease of the osteoclast. Rev Endocr Metab Disord 2:195–201.

    Article  PubMed  CAS  Google Scholar 

  94. Reid AB, Reid IL, Johnson G, Hamonic M, Major P (1989) Familial diffuse cystic angiomatosis of bone. Clin Orthop 211–8.

    Google Scholar 

  95. Riggs BL, Khosla S, Melton LJ, 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302.

    Article  PubMed  CAS  Google Scholar 

  96. Roth DE, Venta PJ, Tashian RE, Sly WS (1992) Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci USA 89:1804–8.

    Article  PubMed  CAS  Google Scholar 

  97. Saito T, Kinoshita A, Yoshiura K, Makita Y, Wakui K, Honke K, et al. (2001) Domain-specific mutations of a transforming growth factor (TGF)-beta 1 latencyassociated peptide cause Camurati-Engelmann disease because of the formation of a constitutively active form of TGF-beta 1. J Biol Chem 276:11469–72.

    Article  PubMed  CAS  Google Scholar 

  98. Sezer O, Heider U, Zavrski I, Kuhne CA, Hofbauer LC (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101:2094–8.

    Article  PubMed  CAS  Google Scholar 

  99. Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, et al. (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243–54.

    Article  PubMed  CAS  Google Scholar 

  100. Shevde NK, Bendixen AC, Dienger KM, Pike JW (2000) Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 97:7829–34.

    Article  PubMed  CAS  Google Scholar 

  101. Shi GP, Chapman HA, Bhairi SM, DeLeeuw C, Reddy VY, Weiss SJ (1995) Molecular cloning of human cathepsin O, a novel endoproteinase and homologue of rabbit OC2. FEBS Lett 357:129–34.

    Article  PubMed  CAS  Google Scholar 

  102. Sly WS, Hewett-Emmett D, Whyte MP, Yu YS, Tashian RE (1983) Carbonic anhydrase II deficiency identified as the primary defect in the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. Proc Natl Acad Sci USA 80:2752–6.

    Article  PubMed  CAS  Google Scholar 

  103. Sly WS, Lang RA, Avioli LV, Haddad J, Lubowitz H, McAlister W (1972) Recessive osteopetrosis: new clinical phenotype. Am J Hum Genet. 24(Suppl):34a.

    Google Scholar 

  104. Sly WS, Whyte MP, Sundaram V, Tashian RE, Hewett-Emmett D, Guibaud P, et al. (1985) Carbonic anhydrase II deficiency in 12 families with the autosomal recessive syndrome of osteopetrosis with renal tubular acidosis and cerebral calcification. N Engl J Med 313:139–45.

    Article  PubMed  CAS  Google Scholar 

  105. Sobacchi C, Frattini A, Orchard P, Porras O, Tezcan I, Andolina M, et al. (2001) The mutational spectrum of human malignant autosomal recessive osteopetrosis. Hum Mol Genet 10:1767–73.

    Article  PubMed  CAS  Google Scholar 

  106. Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–40.

    Article  PubMed  CAS  Google Scholar 

  107. Szulc P, Hofbauer LC, Heufelder AE, Roth S, Delmas PD (2001) Osteoprotegerin serum levels in men: correlation with age, estrogen, and testosterone status. J Clin Endocrinol Metab 86:3162–5.

    Article  PubMed  CAS  Google Scholar 

  108. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–94.

    Article  PubMed  CAS  Google Scholar 

  109. Vaananen HK, Zhao H, Mulari M, Halleen JM (2000) The cell biology of osteoclast function. J Cell Sci 113 (Pt 3):377–81.

    PubMed  CAS  Google Scholar 

  110. Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, et al. (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72:763–71.

    Article  PubMed  Google Scholar 

  111. Vestergaard P, Mosekilde L (2003) Hyperthyroidism, bone mineral, and fracture risk-a meta-analysis. Thyroid 13:585–93.

    Article  PubMed  Google Scholar 

  112. Waguespack SG, Hui SL, White KE, Buckwalter KA, Econs MJ (2002) Measurement of tartrate-resistant acid phosphatase and the brain isoenzyme of creatine kinase accurately diagnoses type II autosomal dominant osteopetrosis but does not identify gene carriers. J Clin Endocrinol Metab 87:2212–7.

    Article  PubMed  CAS  Google Scholar 

  113. Walker DG (1975) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. Science 190:784–5.

    Article  PubMed  CAS  Google Scholar 

  114. Walker DG (1993) Bone resorption restored in osteopetrotic mice by transplants of normal bone marrow and spleen cells. 1975. Clin Orthop 294:4–6.

    PubMed  Google Scholar 

  115. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, et al. (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–9.

    Article  PubMed  CAS  Google Scholar 

  116. Weinstein RS (2001) Glucocorticoid-induced osteoporosis. Rev Endocr Metab Disord 2:65–73.

    Article  PubMed  CAS  Google Scholar 

  117. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–82.

    Article  PubMed  CAS  Google Scholar 

  118. Whyte MP, Hughes AE (2002) Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res 17:26–9.

    Article  PubMed  CAS  Google Scholar 

  119. Whyte MP, Leelawattana R, Reddy SV, Roodman GD (1996) Absence of paramyxo virus transcripts in juvenile Paget bone disease. J Bone Miner Res 11:1041.

    PubMed  CAS  Google Scholar 

  120. Whyte MP, Mills BG, Reinus WR, Podgornik MN, Roodman GD, Gannon FH, et al. (2000) Expansile skeletal hyperphosphatasia: a new familial metabolic bone disease. J Bone Miner Res 15:2330–44.

    Article  PubMed  CAS  Google Scholar 

  121. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, et al. (2002) Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med 347:175–84.

    Article  PubMed  CAS  Google Scholar 

  122. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AJ, Ahmed-Ansari A, Sell K, Pollard J, et al. (1990) Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci USA 87:4828–32.

    Article  PubMed  CAS  Google Scholar 

  123. Wu J, Wang XX, Takasaki M, Ohta A, Higuchi M, Ishimi Y (2001) Cooperative effects of exercise training and genistein administration on bone mass in ovariectomized mice. J Bone Miner Res 16:1829–36.

    Article  PubMed  CAS  Google Scholar 

  124. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Rubin, J., Nanes, M.S. (2005). Clinical Disorders Associated with Alterations in Bone Resorption. In: Bronner, F., Farach-Carson, M.C., Rubin, J. (eds) Bone Resorption. Topics in Bone Biology, vol 2. Springer, London. https://doi.org/10.1007/1-84628-016-8_7

Download citation

  • DOI: https://doi.org/10.1007/1-84628-016-8_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-812-1

  • Online ISBN: 978-1-84628-016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics