Skip to main content

Structural Aspects of Bone Resorption

  • Chapter
Bone Resorption

Part of the book series: Topics in Bone Biology ((TBB,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett TR, Gibbons DC, Utting JC, Orriss IR, Hoebertz A, Rosendaal M, et al. (2003) Hypoxia is a major stimulator of osteoclast formation and bone resorption. J Cell Physiol 196:2–8.

    Article  PubMed  CAS  Google Scholar 

  2. Arnold JS (1970) Focal excessive endosteal resorption in aging and senile osteoporosis, edn. In: Barzel US, editor. Osteoporosis. Grune and Stratton, Inc., New York, 80–100.

    Google Scholar 

  3. Arnold JS (1981) Trabecular patterns and shapes in aging and osteoporosis, edn. In: Jee WSS, Parfitt AM, editors (eds). Bone Histomorphometry: Third International Workshop. Armour Montagu, Paris, 297–308.

    Google Scholar 

  4. Bentolila V, Boyce TM, Fyhrie DP, Drumb R, Skerry TM, Schaffler MB (1998) Intracortical remodeling in adult rat long bones after fatigue loading. Bone 23:275–81.

    Article  PubMed  CAS  Google Scholar 

  5. Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43:535–7.

    Article  PubMed  CAS  Google Scholar 

  6. Burr DB (2002) Targeted and nontargeted remodeling. Bone 30:2–4.

    Article  PubMed  CAS  Google Scholar 

  7. Burr DB, Martin RB, Schaffler MB, Radin EL (1985) Bone remodeling in response to in vivo fatigue micro-damage. J Biomech 18:189–200.

    Article  PubMed  CAS  Google Scholar 

  8. Cohen-Solal ME, Shih MS, Lundy MW, Parfitt AM (1991) A new method for measuring cancellous bone erosion depth: application to the cellular mechanisms of bone loss in postmenopausal osteoporosis. J Bone Miner Res 6:1331–8.

    PubMed  CAS  Google Scholar 

  9. Compston JE, Croucher PI (1991) Histomorphometric assessment of trabecular bone remodelling in osteoporosis. Bone Miner 14:91–102.

    Article  PubMed  CAS  Google Scholar 

  10. Croucher PI, Garrahan NJ, Mellish RW, Compston JE (1991) Age-related changes in resorption cavity characteristics in human trabecular bone. Osteoporos Int 1:257–61.

    Article  PubMed  CAS  Google Scholar 

  11. Croucher PI, Mellish RW, Vedi S, Garrahan NJ, Compston JE (1989) The relationship between resorption depth and mean interstitial bone thickness: agerelated changes in man. Calcif Tissue Int 45:15–19.

    Article  PubMed  CAS  Google Scholar 

  12. Ding M, Hvid I (2000) Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26: 291–5.

    Article  PubMed  CAS  Google Scholar 

  13. Dodd JS, Raleigh JA, Gross TS (1999) Osteocyte hypoxia: a novel mechanotransduction pathway. Am J Phys Cell Phys 277:C589–602.

    Google Scholar 

  14. Epker BN, Frost HM (1965) Correlation of Bone Resorption and Formation with the Physical Behavior of Loaded Bone. J Dent Res 44:33–41.

    PubMed  CAS  Google Scholar 

  15. Eriksen EF (1986) Normal and pathological remodeling of human trabecular bone: three dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocr Rev 7:379–408.

    Article  PubMed  CAS  Google Scholar 

  16. Eriksen EF (1993) Assessment of erosion depth by lamellar counting. Bone 14:443–7.

    Article  PubMed  CAS  Google Scholar 

  17. Eriksen EF, Gundersen HJ, Melsen F, Mosekilde L (1984) Reconstruction of the formative site in iliac trabecular bone in 20 normal individuals employing a kinetic model for matrix and mineral apposition. Metab Bone Dis Relat Res 5:243–52.

    Article  PubMed  CAS  Google Scholar 

  18. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O’Fallon WM, Riggs BL (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption, and bone loss at tissue and cellular levels. J Bone Miner Res 5: 311–19.

    PubMed  CAS  Google Scholar 

  19. Eriksen EF, Langdahl B, Vesterby A, Rungby J, Kassem M (1999) Hormone replacement therapy prevents osteoclastic hyperactivity: A histomorphometric study in early postmenopausal women. J Bone Miner Res 14: 1217–21.

    Article  PubMed  CAS  Google Scholar 

  20. Eriksen EF, Melsen F, Mosekilde L (1984) Reconstruction of the resorptive site in iliac trabecular bone: a kinetic model for bone resorption in 20 normal individuals. Metab Bone Dis Relat Res 5:235–42.

    Article  PubMed  CAS  Google Scholar 

  21. Eriksen EF, Mosekilde L, Melsen F (1985) Trabecular bone resorption depth decreases with age: differences between normal males and females. Bone 6:141–6.

    Article  PubMed  CAS  Google Scholar 

  22. Eriksen EF, Steiniche T, Mosekilde L, Melsen F (1989) Histomorphometric analysis of bone in metabolic bone disease. Endocrinol Metab Clin North Am 18: 919–54.

    PubMed  CAS  Google Scholar 

  23. Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, et al. (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34:869–80.

    Article  PubMed  CAS  Google Scholar 

  24. Feik SA, Thomas CD, Clement JG (1997) Age-related changes in cortical porosity of the midshaft of the human femur. J Anat 191(Pt 3):407–16.

    Article  PubMed  Google Scholar 

  25. Frost HM (1960) Presence of microcracks in vivo in bone. Henry Ford Hosp Med J 8:25–35.

    Google Scholar 

  26. Frost HM (1964) Dynamics of bone remodeling, edn. In: Frost HM, editor. Bone Biodynamics. Little, Brown and Co, Boston, 315–33.

    Google Scholar 

  27. Frost HM (1966) Bone dynamics in osteoporosis and osteomalacia, edn. In: (ed) Series Titl. Charles C. Thomas, Springfield, IL, pp ••.

    Google Scholar 

  28. Frost HM (1969) Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Int 3:211–37.

    Article  CAS  Google Scholar 

  29. Frost HM (1973) Bone Remodeling and its Relationship to Metabolic Bone Disease, edn. In: (ed) Series Titl. Charles C. Thomas, Springfield, IL, pp ••.

    Google Scholar 

  30. Frost HM (1983) The skeletal intermediary organization. Metab Bone Dis Relat Res 4:281–90.

    Article  PubMed  CAS  Google Scholar 

  31. Frost HM (1986) Intermediary Organization of the Skeleton, edn. In: (ed) Series Title. CRC Press, Inc., Boca Raton, FL, pp ••.

    Google Scholar 

  32. Frost HM (1992) Perspectives: bone’s mechanical usage windows. Bone Miner 19:257–71.

    Article  PubMed  CAS  Google Scholar 

  33. Gentzsch C, Delling G, Kaiser E (2003) Microstructural classification of resorption lacunae and perforations in human proximal femora. Calcif Tissue Int 72:698–709.

    Article  PubMed  CAS  Google Scholar 

  34. Gross TS, Rubin CT (1995) Uniformity of resorptive bone loss induced by disuse. J Orthop Res 13:708–14.

    Article  PubMed  CAS  Google Scholar 

  35. Howship J (1817) Experiments and observations in order to determine the means employed by the animal economy in the formation of bone. Transactions of the Medico-Chirurgical Society (London). 6:263–301.

    Google Scholar 

  36. Jaworski ZF (1984) Lamellar bone turnover system and its effector organ. Calcif Tissue Int 36(Suppl 1):S46–55.

    Article  PubMed  Google Scholar 

  37. Jaworski ZF, Duck B, Sekaly G (1981) Kinetics of osteoclasts and their nuclei in evolving secondary Haversian systems. J Anat 133:397–405.

    PubMed  CAS  Google Scholar 

  38. Jaworski ZF, Hooper C (1980) Study of cell kinetics within evolving secondary Haversian systems. J Anat 131:91–102.

    PubMed  CAS  Google Scholar 

  39. Jaworski ZF, Lok E (1972) The rate of osteoclastic bone erosion in Haversian remodeling sites of adult dog’s rib. Calcif Tissue Res 10:103–12.

    Article  PubMed  CAS  Google Scholar 

  40. Jaworski ZFG (1981) The quantum concept of bone remodeling in adults, edn. In: Norman AM, Schaefer K, Coburn JW, DeLuca HF, Fraser D, Grigoleit HG, et al., editors (eds). Vitamin D: Biochemical, Chemical, and Clinical Aspects Related to Calcium Metabolism. Degruyter, Berlin.

    Google Scholar 

  41. Jaworski ZFG, Uthoff HK (1986) Reversibility of nontraumatic disuse osteoporosis during its active phase. Bone 7:431–9.

    Article  PubMed  CAS  Google Scholar 

  42. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28: 150–9.

    Article  PubMed  CAS  Google Scholar 

  43. Jilka RL (2003) Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol 41:182–5.

    Article  PubMed  Google Scholar 

  44. Johnson LC (1964) Morphological analysis in pathology: the kinetics of disease and general biology of bone, edn. In: Frost HM, editor. Bone Biodynamics. Little Brown, Boston, 543–654.

    Google Scholar 

  45. Jones SJ, Boyde A, Ali NN, Maconnachie E (1986) Variation in the sizes of resorption lacunae made in vitro. Scan Electron Microsc 15:71–80.

    Google Scholar 

  46. Judex S, Garman R, Squire M, Busa B, Donahue LR, Rubin C (2004) Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res 19:607–13.

    Article  PubMed  Google Scholar 

  47. Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37:225–33.

    PubMed  CAS  Google Scholar 

  48. Landeros O, Frost HM (1964) A Cell System in Which Rate and Amount of Protein Synthesis Are Separately Controlled. Science 145:1323–4.

    Article  PubMed  CAS  Google Scholar 

  49. Langdahl BL, Mortensen L, Vesterby A, Eriksen EF, Charles P (1996) Bone histomorphometry in hypoparathyroid patients treated with vitamin D. Bone 18: 103–8.

    Article  PubMed  CAS  Google Scholar 

  50. Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36:S56–61.

    Article  PubMed  Google Scholar 

  51. Lanyon LE (1992) The success and failure of the adaptive response to functional load-bearing in averting bone fracture. Bone 13:S17–21.

    Article  PubMed  Google Scholar 

  52. Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–50.

    PubMed  CAS  Google Scholar 

  53. Lee TC, Staines A, Taylor D (2002) Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat 201:437–46.

    Article  PubMed  CAS  Google Scholar 

  54. Li J, Mashiba T, Burr DB (2001) Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage. Calcif Tissue Int 69:281–6.

    Article  PubMed  CAS  Google Scholar 

  55. Lips P, Courpron P, Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 26:13–17.

    Article  PubMed  CAS  Google Scholar 

  56. Martin B (1993) Aging and strength of bone as a structural material. Calcif Tissue Int 53:S34–9; discussion S39–40.

    Article  PubMed  Google Scholar 

  57. Martin B (1993) Aging and strength of bone as a structural material. Calcif Tissue Int 53(Suppl 1):S34–9; discussion S39–40.

    Article  PubMed  Google Scholar 

  58. Martin RB (2002) Is all cortical bone remodeling initiated by microdamage? Bone 30:8–13.

    Article  PubMed  CAS  Google Scholar 

  59. Martin RB, Pickett JC, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop 268–82.

    Google Scholar 

  60. McCalden RW, McGeough JA, Barker MB, Court-Brown CM (1993) Age-related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization, and microstructure. J Bone Joint Surg Am 75:1193–205.

    PubMed  CAS  Google Scholar 

  61. Meunier PJ (1983) Histomorphometry of the skeleton, edn. In: Peck WA, editor. Bone and Mineral Research. Annual 1. Excerpta Medica, Amsterdam, 191–222.

    Google Scholar 

  62. Mori S, Burr DB (1993) Increased intracortical remodeling following fatigue damage. Bone 14:103–9.

    Article  PubMed  CAS  Google Scholar 

  63. Mosekilde L (1990) Consequences of the remodelling process for vertebral trabecular bone structure: a scanning electron microscopy study (uncoupling of unloaded structures). Bone Miner 10:13–35.

    Article  PubMed  CAS  Google Scholar 

  64. Mosekilde L (2000) Age-related changes in bone mass, structure, and strength — effects of loading. Z Rheumatol 59(Suppl 1):1–9.

    Article  PubMed  Google Scholar 

  65. Murrills RJ, Shane E, Lindsay R, Dempster DW (1989) Bone resorption by isolated human osteoclasts in vitro: effects of calcitonin. J Bone Miner Res. 4:259–68.

    PubMed  CAS  Google Scholar 

  66. Noble BS, Peet N, Stevens HY, Brabbs A, Mosley JR, Reilly GC, et al. (2003) Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol 284:C934–43.

    PubMed  CAS  Google Scholar 

  67. Palle S, Chappard D, Vico L, Riffat G, Alexandre C (1989) Evaluation of the osteoclastic population in iliac crest biopsies from 36 normal subjects: a histoenzymologic and histomorphometric study. J Bone Miner Res 4: 501–6.

    PubMed  CAS  Google Scholar 

  68. Parfitt AM (1979) Quantum concept of bone remodeling and turnover: implications for the pathogenesis of osteoporosis. Calcif Tissue Int 28:1–5.

    Article  PubMed  CAS  Google Scholar 

  69. Parfitt AM (1982) The coupling of bone formation to bone resorption: a critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4:1–6.

    Article  PubMed  CAS  Google Scholar 

  70. Parfitt AM (1983) The physiologic and clinical significance of bone histomorphometric data, edn. In: Recker RR, editor. Bone Histomorphometry: Techniques and Interpretation. CRC Press, Boca Raton, FL, 143–224.

    Google Scholar 

  71. Parfitt AM (1984) The cellular basis of bone remodeling: the quantum concept reexamined in light of recent advances in the cell biology of bone. Calcif Tissue Int 36(Suppl 1):S37–45.

    Article  PubMed  Google Scholar 

  72. Parfitt AM (1987) Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 82:68–72.

    Article  PubMed  CAS  Google Scholar 

  73. Parfitt AM (1992) Implications of architecture for the pathogenesis and prevention of vertebral fracture. Bone 13(Suppl 2):S41–7.

    Article  PubMed  Google Scholar 

  74. Parfitt AM (1993) Bone age, mineral density, and fatigue damage. Calcif Tissue Int 53(Suppl 1):S82–5; discussion S85–6.

    Article  PubMed  Google Scholar 

  75. Parfitt AM (1993) Morphometry of bone resorption: introduction and overview. Bone 14:435–41.

    Article  PubMed  CAS  Google Scholar 

  76. Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55:273–86.

    Article  PubMed  CAS  Google Scholar 

  77. Parfitt AM (1996) Skeletal heterogeneity and the purposes of bone remodeling, edn. In: Marcus R, Feldman B, Kelsey J, editors (eds). Osteoporosis. Academic Press, San Diego.

    Google Scholar 

  78. Parfitt AM (2000) BMU origination and progression: relationship to targeted and nontargeted remodeling. J Bone Mine Res 15:823.

    Google Scholar 

  79. Parfitt AM (2002) Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone 30:5–7.

    Article  PubMed  CAS  Google Scholar 

  80. Parfitt AM, Foldes J (1991) The ambiguity of interstitial bone thickness: a new approach to the mechanism of trabecular thinning. Bone 12:119–22.

    Article  PubMed  CAS  Google Scholar 

  81. Parfitt AM, Mathews CH, Villanueva AR, Kleerekoper M, Frame B, Rao DS (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. Implications for the microanatomic and cellular mechanisms of bone loss. J Clin Invest 72:1396–409.

    Article  PubMed  CAS  Google Scholar 

  82. Parfitt AM, Mundy GR, Roodman GD, Hughes DE, Boyce BF (1996) A new model for the regulation of bone resorption, with particular reference to the effects of bisphosphonates. J Bone Miner Res 11:150–9.

    Article  PubMed  CAS  Google Scholar 

  83. Parisien MV, McMahon D, Pushparaj N, Dempster DW (1988) Trabecular architecture in iliac crest bone biopsies: infra-individual variability in structural parameters and changes with age. Bone 9:289–95.

    Article  PubMed  CAS  Google Scholar 

  84. Polig E, Jee WS (1987) Bone age and remodeling: a mathematical treatise. Calcif Tissue Int 41:130–6.

    Article  PubMed  CAS  Google Scholar 

  85. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–8.

    PubMed  CAS  Google Scholar 

  86. Rubin CT (1984) Skeletal strain and the functional significance of bone architecture. Calcif Tissue Int 36:S11–18.

    Article  PubMed  Google Scholar 

  87. Rubin J, Fan X, Biskobing DM, Taylor WR, Rubin CT (1999) Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J Orthop Res 17:639–45.

    Article  PubMed  CAS  Google Scholar 

  88. Schock CC, Noyes FR, Villanueva AR (1972) Measurement of haversian bone remodeling by means of tetracycline labeling in rib of Rhesus monkeys. Henry Ford Hosp Med J 20:131–44.

    CAS  Google Scholar 

  89. Steiniche T, Christiansen P, Vesterby A, Hasling C, Ullerup R, Mosekilde L, et al. (1994) Marked changes in iliac crest bone structure in postmenopausal osteoporotic patients without any signs of disturbed bone remodeling or balance. Bone 15:73–9.

    Article  PubMed  CAS  Google Scholar 

  90. Steiniche T, Mosekilde L, Christensen MS, Melsen F (1989) Histomorphometric analysis of bone in idiopathic hypercalciuria before and after treatment with thiazide. Apmis 97:302–8.

    PubMed  CAS  Google Scholar 

  91. Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289:1504–8.

    Article  PubMed  CAS  Google Scholar 

  92. Thomsen JS, Mosekilde L, Mosekilde E (1996) Quantification of remodeling parameter sensitivity — assessed by a computer simulation model. Bone 19:505–11.

    Article  PubMed  CAS  Google Scholar 

  93. Tran Van P, Vignery A, Baron R (1982) An electron-microscopic study of the bone-remodeling sequence in the rat. Cell Tissue Res 225:283–92.

    Article  Google Scholar 

  94. Tran Van PT, Vignery A, Baron R (1982) Cellular kinetics of the bone remodeling sequence in the rat. Anat Rec 202:445–51.

    Article  Google Scholar 

  95. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3:346–55.

    Article  PubMed  CAS  Google Scholar 

  96. Wehrli FW, Gomberg BR, Saha PK, Song HK, Hwang SN, Snyder PJ (2001) Digital topological analysis of in vivo magnetic resonance microimages of trabecular bone reveals structural implications of osteoporosis. J Bone Miner Res 16:1520–31.

    Article  PubMed  CAS  Google Scholar 

  97. Yeni YN, Brown CU, Wang Z, Norman TL (1997) The influence of bone morphology on fracture toughness of the human femur and tibia. Bone 21:453–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag London Limited

About this chapter

Cite this chapter

Bain, S.D., Gross, T.S. (2005). Structural Aspects of Bone Resorption. In: Bronner, F., Farach-Carson, M.C., Rubin, J. (eds) Bone Resorption. Topics in Bone Biology, vol 2. Springer, London. https://doi.org/10.1007/1-84628-016-8_4

Download citation

  • DOI: https://doi.org/10.1007/1-84628-016-8_4

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-812-1

  • Online ISBN: 978-1-84628-016-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics