Skip to main content

Part of the book series: Cancer Treatment and Research ((CTAR,volume 119))

Conclusions

This review highlights the current knowledge of the alterations that occur in cancer and that involve integrins and integrin-activated pathways. Integrins are cell surface receptors for ECM proteins that mediate a variety of functions related to cell proliferation, differentiation, and survival. Although the specific functions of integrins and their ligands in cancer need to be further investigated, recent publicationsoutlining their expression pave the way for future investigations describing integrin functional alterations and the signaling pathways involved in cancer progression. Similarly, changes in integrin affinity, avidity, or activation state are likely to control cell-ECM interaction; additional investigations on these topics will help understanding the role of integrins in cancer. Future research will focus on functional correlates, combining general knowledge of integrins and integrin signaling with an increasing appreciation for the role of the ECM in cancer progression. Integrins and their downstream signaling effectors appear to be promising targets for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hynes, R.O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687.

    Article  CAS  PubMed  Google Scholar 

  2. Hemler, M.E., Weitzman, J.B., Pasqualini, R., Kawaguchi, S., Kassner, P.D., and Berdichevsky, F.B. 1995. Structure, Biochemical Properties, and Biological Functions of Integrin Cytoplasmic Domains. In Integrins: The Biological Problems. Y. Takada, editor. Boca Raton: CRC Press Inc. 1–35.

    Google Scholar 

  3. Ruoslahti, E. 1997. Integrins as signaling molecules and targets for tumor therapy. Kidney International 51:1413–1417.

    Article  CAS  PubMed  Google Scholar 

  4. Zheng, D.Q., Woodard, A.S., Tallini, G., and Languino, L.R. 2000. Substrate specificity of α v β 3 integrin-mediated cell migration and phosphatidylinositol 3-kinase/AKT pathway activation. J. Biol. Chem. 275:24565–24574.

    Article  CAS  PubMed  Google Scholar 

  5. Fornaro, M., and Languino, L.R. 1997. Alternatively spliced variants: a new view of the integrin cytoplasmic domain. Matrix Biology 16:185–193.

    Article  CAS  PubMed  Google Scholar 

  6. Williams, M.J., Hughes, P.E., O’Toole, T.E., and Ginsberg, M.H. 1994. The inner world of cell adhesion: integrin cytoplasmic domains. Trends in Cell Biol. 4:109–112.

    Article  CAS  Google Scholar 

  7. Vidal, F., Aberdam, D., Miquel, C., Christiano, A.M., Pulkkinen, L., Uitto, J., Ortonne, J.-P., and Meneguzzi, G. 1995. Integrin β4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nature Genetics 10:229-234.

    Google Scholar 

  8. Fornaro, M., Steger, C.A., Bennett, A.M., Wu, J.J., and Languino, L.R. 2000. Differential role of β1C and β1A integrin cytoplasmic variants in modulating focal adhesion kinase, protein kinase B/AKT, and Ras/Mitogen-activated protein kinase pathways. Mol. Biol. Cell 11:2235–2249.

    CAS  PubMed  Google Scholar 

  9. Bottazzi, M.E., and Assoian, R.K. 1997. The extracellular matrix and mitogenic growth factors control G1 phase cyclins and cyclin-dependent kinase inhibitors. Trends in Cell Biology 7:348–352.

    Article  CAS  PubMed  Google Scholar 

  10. Frisch, S.M., and Ruoslahti, E. 1997. Integrins and anoikis. Current Op. Cell Biol. 9:701–706.

    Article  CAS  Google Scholar 

  11. Schwartz, M.A., Schaller, M.D., and Ginsberg, M.H. 1995. Integrins: emerging paradigms of signal transduction. Annu. Rev. Cell Dev. Bio. 11:549–599.

    Article  CAS  Google Scholar 

  12. Chen, Q., Kinch, M.S., Lin, T.H., Burridge, K., and Juliano, R.L. 1994. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J. Biol. Chem. 269:26602–26605.

    CAS  PubMed  Google Scholar 

  13. Zhu, X., and Assoian, R.K. 1995. Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol. Biol. Cell 6:273–282.

    CAS  PubMed  Google Scholar 

  14. Clark, E., and Hynes, R. 1996. Ras activation is necesary for integrin-mediated activation of extracellular signal-regulated kinase 2 and cytosolic phospholipase A2 but not for cytoskeletal organization. J. Biol. Chem. 271:14814–14818.

    Article  CAS  PubMed  Google Scholar 

  15. Fang, F., Orend, G., Watanabe, N., Hunter, T., and Ruoslahti, E. 1996. Dependence of cyclin E-CDK2 kinase activity on cell anchorage. Science (Wash. D.C.) 271:499–502.

    Article  CAS  Google Scholar 

  16. Fornaro, M., Tallini, G., Zheng, D.Q., Flanagan, W.M., Manzotti, M., and Languino, L.R. 1999. p27kip1 acts as a downstream effector of and is coexpressed with the β1C integrin in prostatic adenocarcinoma. J. Clin. Invest. 103:321–329.

    Article  CAS  PubMed  Google Scholar 

  17. Varner, J.A., Emerson, D.A., and Juliano, R.L. 1995. Integrin αSβ1 expression negatively regulates cell growth: reversal by attachment to fibronectin. Mol. Biol. Cell 6:725–740.

    CAS  PubMed  Google Scholar 

  18. Manes, T., Zheng, D.Q., Tognin, S., Woodard, A.S., Marchisio, P.C., and Languino, L.R. 2003. alphavbeta3 integrin expression up-regulates cdc2, which modulates cell migration. J. Cell Biol. 161:817–826.

    Article  CAS  PubMed  Google Scholar 

  19. Fornaro, M., Plescia, J., Chheang, S., Tallini, G., Zhu, Y.-M., King, M., Altieri, D.C., and Languino, L.R. 2003. Fibronectin protects prostate cancer cells from tumor necrosis factor alpha-induced apoptosis via the AKT/Survivin pathway. J. Biol. Chem. 278:50402–50411.

    Article  CAS  PubMed  Google Scholar 

  20. Hemler, M., Mannion, B., and Berditchevski, F. 1996. Association of TM4SF proteins with integrins: relevance to cancer. Biochim. Biophys. Acta 1287:67–71.

    PubMed  Google Scholar 

  21. Guan, J.L., Trevithick, J.E., and Hynes, R.O. 1991. Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120 kDa protein. Cell Regul. 2:951.

    CAS  PubMed  Google Scholar 

  22. Kornberg, L., Earp, H., Turner, C., Prockop, C., and Juliano, R. 1991. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering in β1 integrins. Proc. Natl. Acad. Sci. U S A 88:8392–8396.

    Article  CAS  PubMed  Google Scholar 

  23. Schaller, M.D. 2001. Biochemical signals and biological responses elicited by the focal adhesion kinase. Biochim. Biophys. Acta 1540:1–21.

    Article  CAS  PubMed  Google Scholar 

  24. Ilic, D., Furuta, Y., Kanazawa, S., Takeda, N., Sobue, K., Nakatsuji, N., Nomura, S., Fujimoto, J., Okada, M., Yamamoto, T., et al. 1995. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377:539–543.

    Article  CAS  PubMed  Google Scholar 

  25. Ilic, D., Kanazawa, S., Furuta, Y., Yamamoto, T., and Aizawa, S. 1996. Impairment of mobility in endodermal cells by FAK deficiency. Exp. Cell Res. 222:298–303.

    Article  CAS  PubMed  Google Scholar 

  26. Zheng, D.Q., Woodard, A.S., Fornaro, M., Tallini, G., and Languino, L.R. 1999. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Research 59:1655–1664.

    CAS  PubMed  Google Scholar 

  27. Cary, L.A., Chang, J.F., and Guan, J.-L. 1996. Stimulation of cell migration by overexpression of focal adhesionkinase and its association with Src and Fyn. J. Cell Sci. 109:1787–1794.

    CAS  PubMed  Google Scholar 

  28. Gilmore, A., and Romer, H. 1996. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell 7:1209–1224.

    CAS  PubMed  Google Scholar 

  29. Tremblay, L., Hauck, W., Aprikian, A.G., Begin, L.R., Chapdelaine, A., and Chevalier, S. 1996. Focal adhesion kinase pp125AK expression, activation and association with paxillin and p50CSK in human metastatic prostate carcinoma. Int. J. Cancer 68:164–171.

    Article  CAS  PubMed  Google Scholar 

  30. Stanzione, R., Picascia, A., Chieffi, P., Imbimbo, C., Palmieri, A., Mirone, V., Staibano, S., Franco, R., De Rosa, G., Schlessinger, J., et al. 2001. Variations of proline-rich kinase Pyk2 expression correlate with prostate cancer progression. Lab. Invest. 81:51–59.

    CAS  PubMed  Google Scholar 

  31. Sieg, D.J., Hauck, C.R., and Schlaepfer, D.D. 1999. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112:2677–2691.

    CAS  PubMed  Google Scholar 

  32. Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A., and Soriano, P. 1999. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18:2459–2471.

    Article  CAS  PubMed  Google Scholar 

  33. Slack, J.K., Adams, R.B., Rovin, J.D., Bissonette, E.A., Stoker, C.E., and Parsons, J.T. 2001. Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20:1152–1163.

    Article  CAS  PubMed  Google Scholar 

  34. Rameh, L.E., and Cantley, L.C. 1999. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274:8347–8350.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, B.H., Aoki, M., Zheng, J.Z., Li, J., and Vogt, P.K. 1999. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Proc. Natl. Acad. Sci. USA 96:2077–2081.

    Article  CAS  PubMed  Google Scholar 

  36. Morales-Ruiz, M., Fulton, D., Sowa, G., Languino, L.R., Fujio, Y., Walsh, K., and Sessa, W.C. 2000. Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ. Res. 86:892–896.

    CAS  PubMed  Google Scholar 

  37. Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P.H., and Downward, J. 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16:2783–2793.

    Article  CAS  PubMed  Google Scholar 

  38. King, W.G., Mattaliano, M.D., Chan, T.O., Tsichlis, P.N., and Brugge, J.S. 1997. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 17:4406–4418.

    CAS  PubMed  Google Scholar 

  39. Chen, H.-C., and Guan, J.-L. 1994. Association of focal adhesion kinase with its potential substrate phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. U.S.A. 91:10148–10152.

    Article  CAS  PubMed  Google Scholar 

  40. Downward, J. 1998. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 10:262–267.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, M., Wang, G., Paciga, J.E., Feldman, R.I., Yuan, Z.Q., Ma, X.L., Shelley, S.A., Jove, R., Tsichlis, P.N., Nicosia, S.V., et al. 2001. AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am. J. Pathol. 159:431–437.

    CAS  PubMed  Google Scholar 

  42. Paweletz, C.P., Charboneau, L., Bichsel, V.E., Simone, N.L., Chen, T., Gillespie, J.W., Emmert-Buck, M.R., Roth, M.J., Petricoin, I.E., and Liotta, L.A. 2001. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989.

    Article  CAS  PubMed  Google Scholar 

  43. Mercurio, A.M., Rabinovitz, I., and Shaw, L.M. 2001. The α6β4 integrin and epithelial cell migration. Current Opin. Cell Biol. 13:541–545.

    Article  CAS  Google Scholar 

  44. Maehama, T., and Dixon, J.E. 1999. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9:125–128.

    Article  CAS  PubMed  Google Scholar 

  45. Tamura, M., Gu, J., Tran, H., and Yamada, K.M. 1999. PTEN gene and integrin signaling in cancer. J. Natl. Cancer Inst. 91:1820–1828.

    Article  CAS  PubMed  Google Scholar 

  46. Tamura, M., Gu, J., Matsumoto, K., Aota, S., Parsons, R., and Yamada, K.M. 1998. Inhibition of cell migration, spreading and focal adhesions by tumor suppressor PTEN. Science 280:1614–1617.

    Article  CAS  PubMed  Google Scholar 

  47. Li, J., Yen, C, Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., et al. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947.

    Article  CAS  PubMed  Google Scholar 

  48. Steck, P.A., Pershouse, M.A., Jasser, S.A., Yung, W.K., Lin, H., Ligon, A.H., Langford, L.A., Baumgard, M.L., Hattier, T., Davis, T., et al. 1997. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nature Genet. 15:356–362.

    Article  CAS  PubMed  Google Scholar 

  49. Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J.G., Jen, J., Isaacs, W.B., Bova, G.S., and Sidransky, D. 1997. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57:4997–5000.

    CAS  PubMed  Google Scholar 

  50. Suzuki, H., Freije, D., Nusskern, D.R., Okami, K., Cairns, P., Sidransky, D., Isaacs, W.B., and Bova, G.S. 1998. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 58:204–209.

    CAS  PubMed  Google Scholar 

  51. Teng, D.H., Hu, R., Lin, H., Davis, T., Iliev, D., Frye, C., Swedlund, B., Hansen, K.L., Vinson, V.L., Gumpper, K.L., et al. 1997. MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res. 57:5221–5225.

    CAS  PubMed  Google Scholar 

  52. Vlietstra, R.J., van Alewijk, D.C.J.G., Hermans, K.G.L., van Steenbrugge, G.J., and Trapman, J. 1998. Frequent inactivation of PTEN in prostate cancer cell lines and xenografts. Cancer Res. 58:2720–2723.

    CAS  PubMed  Google Scholar 

  53. McMenamin, M.E., Soung, P., Perera, S., Kaplan, I., Loda, M., and Sellers, W.R. 1999. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 59:4291–4296.

    CAS  PubMed  Google Scholar 

  54. Campbell, S.L., Khosravi-Far, R., Rossman, K.L., Clark, G.J., and Der, C.J. 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–1413.

    Article  CAS  PubMed  Google Scholar 

  55. Robinson, M.J., and Cobb, M.H. 1997. Mitogen-activated protein kinase pathways. Current Opinion in Cell Biology 9:180–186.

    Article  CAS  PubMed  Google Scholar 

  56. Chang, L., and Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40.

    Article  CAS  PubMed  Google Scholar 

  57. Mainiero, F., Murgia, C., Wary, K.K., Curatola, A.M., Pepe, A., Blumemberg, M., Westwick, J.K., Der, C.J., and Giancotti, F.G. 1997. The coupling of α6β4 integrin to Ras-MAP kinase pathways mediated by Shc controls keratinocyte proliferation. EMBO J. 16:2365–2375.

    Article  CAS  PubMed  Google Scholar 

  58. Schlaepfer, D.D., and Hunter, T. 1998. Integrin signalling and tyrosine phosphorylation: just the FAKs? Trends Cell Biol. 8:151–157.

    Article  CAS  PubMed  Google Scholar 

  59. Howe, A., Aplin, A.E., Alahari, S.K., and Juliano, R.L. 1998. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10:220–231.

    Article  CAS  PubMed  Google Scholar 

  60. Schwartz, M.A., and Assoian, R.K. 2001. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114:2553–2560.

    CAS  PubMed  Google Scholar 

  61. Sastry, S.K., Lakonishok, M., Wu, S., Truong, T.Q., Huttenlocher, A., Turner, C.E., and Horwitz, A.F. 1999. Quantitative changes in integrin and focal adhesion signaling regulate myoblast cell cycle withdrawal. J. Cell Biol. 144:1295–1309.

    Article  CAS  PubMed  Google Scholar 

  62. Gu, J., Tamura, M., Pankov, R., Danen, E.H., Takino, T., Matsumoto, K., and Yamada, K.M. 1999. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J. Cell Biol. 146:389–403.

    Article  CAS  PubMed  Google Scholar 

  63. Cheresh, D.A., Leng, J., and Klemke, R.L. 1999. Regulation of cell contraction and membrane ruffling by distinct signals in migratory cells. J. Cell Biol. 146:1107–1116.

    Article  CAS  PubMed  Google Scholar 

  64. Frisch, S.M., and Screaton, R.A. 2001. Anoikis mechanisms. Curr. Opin. Cell Biol. 13:555–562.

    Article  CAS  PubMed  Google Scholar 

  65. Le Gall, M., Chambard, J.C., Breittmayer, J.P., Grall, D., Pouyssegur, J., and Van Obberghen-Schilling, E. 2000. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol. Biol. Cell 11:1103–1112.

    PubMed  Google Scholar 

  66. Rosen, K., Rak, J., Leung, T., Dean, N.M., Kerbel, R.S., and Filmus, J. 2000. Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J. Cell Biol. 149:447–456.

    Article  CAS  PubMed  Google Scholar 

  67. Cho, S.Y., and Klemke, R.L. 2000. Extracellular-regulated kinase activation and CAS/Crk coupling regulate cell migration and suppress apoptosis during invasion of the extracellular matrix. J. Cell Biol. 149:223–236.

    Article  CAS  PubMed  Google Scholar 

  68. Gioeli, D., Mandell, J.W., Petroni, G.R., Frierson, H.F., Jr., and Weber, M.J. 1999. Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res. 59:279–284.

    CAS  PubMed  Google Scholar 

  69. Magi-Galluzzi, C., Mishra, R., Fiorentino, M., Montironi, R., Yao, H., Capodieci, P., Wishnow, K., Kaplan, I., Stork, P.J., and Loda, M. 1997. Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab. Invest. 76:37–51.

    CAS  PubMed  Google Scholar 

  70. Price, D.T., Rocca, G.D., Guo, C., Ballo, M.S., Schwinn, D.A., and Luttrell, L.M. 1999. Activation of extracellular signal-regulated kinase in human prostate cancer. J. Urol. 162:1537–1542.

    Article  CAS  PubMed  Google Scholar 

  71. Augustus, M., Moul, J.W., and Srivastava, S. 1999. The molecular phenotype of the malignant prostate. Washington, DC: IOS Press. 321–340 pp.

    Google Scholar 

  72. Parise, L.V., Lee, J., and Juliano, R.L. 2000. New aspects of integrin signaling in cancer. Semin. Cancer Biol. 10:407–414.

    Article  CAS  PubMed  Google Scholar 

  73. Vaux, D.L., Cory, S., and Adams, J.M. 1988. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335:440–442.

    Article  CAS  PubMed  Google Scholar 

  74. Reed, J.C. 2000. Mechanisms of apoptosis. Am. J. Pathol. 157:1415–1430.

    CAS  PubMed  Google Scholar 

  75. ang, Z., Vuori, K., Reed, J.C., and Ruoslahti, E. 1995. The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc. Natl. Acad. Sci. USA 92:6161–6165.

    Article  Google Scholar 

  76. Matter, M.L., and Ruoslahti, E. 2001. A signaling pathway from the α5β1 and αVβ3 integrins that elevates bcl-2 transcription. J. Biol. Chem. 276:27757–27763.

    Article  CAS  PubMed  Google Scholar 

  77. Bruckheimer, E.M., Gjertsen, B.T., and McDonnell, T.J. 1999. Implications of cell death regulation in the pathogenesis and treatment of prostate cancer. Semin. Oncol. 26:382–398.

    CAS  PubMed  Google Scholar 

  78. Colombel, M., Symmans, F., Gil, S., O’Toole, K.M., Chopin, D., Benson, M., Olsson, C.A., Korsmeyer, S., and Buttyan, R. 1993. Detection of the apoptosis-suppressing oncoprotein bcl-2 in hormone-refractory human prostate cancers. Am. J. Pathol. 143:390–400.

    CAS  PubMed  Google Scholar 

  79. Del Bufalo, D., Biroccio, A., Leonetti, C., and Zupi, G. 1997. Bcl-2 overexpression enhances the metastatic potential of a human breast cancer line. Faseb J. 11:947–953.

    PubMed  Google Scholar 

  80. Eliceiri, B.P. 2001. Integrin and growth factor receptor crosstalk. Circ. Res. 89:1104–1110.

    Article  CAS  PubMed  Google Scholar 

  81. Comoglio, P.M., Boccaccio, C., and Trusolino, L. 2003. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. 15:565–571.

    Article  CAS  PubMed  Google Scholar 

  82. Goel, H.L., and Dey, C.S. 2002. PKC-regulated myogenesis is associated with increased tyrosine phosphorylation of FAK, Cas, and paxillin, formation of Cas-CRK complex, and JNK activation. Differentiation 70:257–271.

    Article  CAS  PubMed  Google Scholar 

  83. Howe, A.K., Aplin, A.E., and Juliano, R.L. 2002. Anchorage-dependent ERK signaling — mechanisms and consequences. Curr. Opin. Genet. Dev. 12:30–35.

    Article  CAS  PubMed  Google Scholar 

  84. Yamada, K.M., and Even-Ram, S. 2002. Integrin regulation of growth factor receptors. Nat. Cell Biol. 4:E75–E76.

    Article  CAS  PubMed  Google Scholar 

  85. Sieg, D.J., Hauck, C.R., Ilic, D., Klingbeil, C.K., Schaefer, E., Damsky, C.H., and Schlaepfer, D.D. 2000. FAK integrates growth-factor and integrin signals to promote cell migration. Nat. Cell Biol. 2:249–256.

    Article  CAS  PubMed  Google Scholar 

  86. Baron, V., Calleja, V., Ferrari, P., Alengrin, F., and Van Obberghen, E. 1998. p125Fak focal adhesion kinase is a substrate for the insulin and insulin-like growth factor-I tyrosine kinase receptors. J. Biol. Chem. 273:7162–7168.

    Article  CAS  PubMed  Google Scholar 

  87. Goel, H.L., and Dey, C.S. 2002. Insulin stimulates spreading of skeletal muscle cells involving the activation of focal adhesion kinase, phosphatidylinositol 3-kinase and extracellular signal regulated kinases. J. Cell. Physiol. 193:187–198.

    Article  CAS  PubMed  Google Scholar 

  88. Guvakova, M.A., and Surmacz, E. 1999. The activated insulin-like growth factor I receptor induces depolarization in breast epithelial cells characterized by actin filament disassembly and tyrosine dephosphorylation of FAK, Cas, and paxillin. Exp. Cell. Res. 251:244–255.

    Article  CAS  PubMed  Google Scholar 

  89. Tai, Y.T., Podar, K., Catley, L., Tseng, Y.H., Akiyama, M., Shringarpure, R., Burger, R., Hideshima, T., Chauhan, D., Mitsiades, N., et al. 2003. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of β1-integrin and phosphatidylinositol 3’-kinase/AKT signaling. Cancer Res. 63:5850–5858.

    CAS  PubMed  Google Scholar 

  90. Zheng, B., and Clemmons, D.R. 1998. Blocking ligand occupancy of the αVβ3 integrin inhibits insulin-like growth factor I signaling in vascular smooth muscle cells. Proc. Natl. Acad. Sci. USA 95:11217–11222.

    Article  CAS  PubMed  Google Scholar 

  91. Clemmons, D.R., and Maile, L.A. 2003. Minireview: Integral membrane proteins that function coordinately with the insulin-like growth factor I receptor to regulate intracellular signaling. Endocrinology 144:1664–1670.

    Article  CAS  PubMed  Google Scholar 

  92. Jones, J.I., Prevette, R.T., Gockerman, A., and Clemmons, D.R. 1996. Ligand occupancy of the αVβ3 integrin is necessary for smooth muscle cells to migrate in response to insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 93:2482–2487.

    Article  CAS  PubMed  Google Scholar 

  93. Maile, L.A., and Clemmons, D.R. 2002. The αVβ3 integrin regulates insulin-like growth factor I (IGF-I) receptor phosphorylation by altering the rate of recruitment of the Srchomology 2-containing phosphotyrosine phosphatase-2 to the activated IGF-I receptor Endocrinology 143:4259–4264.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Goel, H.L., Languino, L.R. (2004). Integrin Signaling in Cancer. In: Kumar, R. (eds) Molecular Targeting and Signal Transduction. Cancer Treatment and Research, vol 119. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7847-1_2

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7847-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7822-4

  • Online ISBN: 978-1-4020-7847-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics