Skip to main content
  • 353 Accesses

Summary

To summarise, diffusion processes are used to make the surface wear resistant through formation of required element or elements enriched layer. Once the element is deposited on the surface by pack cementation or by vapor phase deposition or through other methods, the subsequent diffusion process shall depend on the diffusivity of the element, temperature, concentration gradient and the time of holding at the temperature. Hard surfaces formed by diffusion of interstitials like C, B or compound like VC resist abrasive and adhesive wear. The substitutional elements like Al and Cr form corrosion and oxidation resistant surfaces. Multi-component CVD coating of WC plus W has been developed to resist erosive wear in gas turbine blades. Multi-component diffusion coating of chromium and carbon has been used in cyclone separator to minimize erosive and corrosive wear. Diffusion coatings of chromium and aluminium in nimonic blades are used to minimize wear due to high temperature oxidation and corrosion in stationary gas turbine blades and vanes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Friedrich Preisser, Richard Seemann and Wilfred Rzenker, AM&P, June, 1998, p84II–84LL

    Google Scholar 

  2. John Cataldo, Frank Galligani, and Dave Harrandan, AM&P, April, 2000, p35–38

    Google Scholar 

  3. P. Jewsberry, Materials Forum, 9(3), p179–181

    Google Scholar 

  4. Howard C. Fielder & Richard J. Sierski, Source Book of Wear Control Technology, ASM, 1978, p364–367

    Google Scholar 

  5. K.G. Budinski, Wear resistance of diffusion treated surfaces, Proc. Int. Conf. on WOM, San Fransico, CA, Pt B, April 13–16, 1993, Elsevier, p757–762

    Google Scholar 

  6. L. Hsu and A.R. Stevens, Proc. Conf. on Met. Coatings 1980, San Diego, CA, Vol. II, J.N. Zemel (ed), Elsevier Sequoia, Lausanne, April, 1980, p4419

    Google Scholar 

  7. E. Fitzer et.al., Proc. Conf. on Materials and coatings to resist high temperature corrosion, D.R. Holmes and A Rahmel (Eds), Applied Science, 1977, p313

    Google Scholar 

  8. SUPERALLOYS II, Edt. Chester T. Sims & others, Copyright © 1987, John Wiley & Sons, Inc., Chapter 13 on Protective Coatings, by John H. Wood and Edward H. Goldman p361

    Google Scholar 

  9. M. Hansen, Constitution of Binary Alloys, McGraw-Hill, New York, 1958

    Google Scholar 

  10. G.W. Goward and D.H. Boone, Oxid. Met., 3, p475, 1971

    Article  CAS  Google Scholar 

  11. T.E. Swarr, Aluminized Steel for Molten Carbonate Fuel Cells, Microstructural Science, vol 19, ASM International, 1992, p583–596

    CAS  Google Scholar 

  12. J.R. Nicholls and D.J. Stephension, Metals & Materials, March 1991, p157–163

    Google Scholar 

  13. G. Lehnert and H. Meinhardt, Surface Treatment, 1972, 1, 72

    Google Scholar 

  14. V. Ellis, Microstructural Science, Volume 19, ASM International, 1992, p597

    CAS  Google Scholar 

  15. J.H. Wood et.al., ASME Paper no.85-GT-9, March, 1985

    Google Scholar 

  16. John H. Wood and Edward H. Goldman, Chapter on’ Protective Coatings’, in Superalloys II, (Ed. Chester T. Sims & others), John Wiley & Sons, NY, 1987, p378

    Google Scholar 

  17. D. Garg & P.N. Dyer, “Erosive wear behavior of chemical vapor deposited multilayer tungsten carbide coating”, Proc. Conf. On’ Wear of Materials’, Part A, (Ed, K.C Ludema & others), p 552–557, San Francisco, CA, April 13–16, 1993, Elsevier Sequoia, SA, Laussane

    Google Scholar 

  18. D. Garg & others, Low temperature CVD tungsten carbide coatings for wear/erosion, J. Amer. Cer. Soc., 1992, 75(4), 1008–1011

    Google Scholar 

  19. W.A. Gibeaut and E.S Bartlett, in “Coatings of High-Temperature Materials”, Pt2, H. Hansner (Ed.), Plenum, NY, 1966, p101

    Google Scholar 

  20. J. Qureshi, Characterization of coating process for steam turbine blades, J. Vac. Sci. Technol., 1986, A4(6), 2638–2647

    Google Scholar 

  21. J.E. Newhart, Evaluating and controlling erosion in aircraft turbine engine, Naval Air Propulsion Test Centre, Trenton. 1983.

    Google Scholar 

  22. J.D. Schell and K.P. Taylor, Sputter coating processes for compressor airfoils, Technical report no NADC-86144-60, General Electric Company, September, 1986

    Google Scholar 

  23. D.W. Richerson, Modern Ceramic Engineering, Marcel Dekker, NY, 1982

    Google Scholar 

  24. J.M. Rashid, M. Freling and L.A. Friedrich, Materials for advanced turbine engines (MATE), project 4-Erosion resistant compressor airfoil coating, Report prepared by NASA Lewis Center under contract NAS3-20072, by United Technologies Corp, Pratt & Whitney, East Hertford, CT, May, 1987.

    Google Scholar 

  25. M.T. Groves, Environmental Protection to 922 K (1200 F) for Titanium Alloys, Report prepared for NASA Lewis research Center under contract NAS3-14339, by TRW Inc., Nov, 1973

    Google Scholar 

  26. A Kempster, Handbook on Choosing the Right Engineering Surface. The Welding Institute, Abington Hall, Cambridge, 1989

    Google Scholar 

  27. Y. Harda, J. Met. Finishing Soc. Japan, 1972, 23, G, 509

    Google Scholar 

  28. J.H. Wood, Protective Claddings and Coatings for Utility Gas Turbines, Final Report, Project 1460-1, Palo Alto, CA, Nov, 1983

    Google Scholar 

  29. Kazuo Asaka, PMTEC 2000, Powder Metallurgy and Particulate Materials, New York, 30 May–3 June, MPIF

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2004). Diffused and CVD Coatings of Single and Multiple Elements. In: Advanced Thermally Assisted Surface Engineering Processes. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7764-5_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7764-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7696-1

  • Online ISBN: 978-1-4020-7764-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics