Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

  • 2263 Accesses

Summary

We have in this chapter discussed some magnetoresistive phenomena, and how some of them are applied, in particular in magnetic recording. The phenomena and their current applications form a fascinating and challenging mixture of research ranging from quantum mechanics to materials physics and state-of-the-art processing technologies. The main current applications of magnetoresistance are in magnetic field sensing, with perhaps some of the most advanced devices, such as spin valves and magnetic tunneling junctions, in the area of magnetic recording. However, current device applications are to some extent limited both by the magnitude and sensitivity of the magnetoresistive effect on the one hand, and by the complex sets of materials and concomitant complex and expensive processing technologies. Semiconductor spintronics opens up the possibility of both better materials and processing control, as well as the possibility of completely novel devices and applications. It remains to be seen when such devices and applications will actually be realized, but it is certain that research in semiconductor spintronics will remain an active and stimulating field at the intersection of basic physics, materials research, and engineering for a long time to come.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chaezelas, Phys. Rev. Lett. 61, 2472 (1988).

    Article  CAS  Google Scholar 

  2. B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Guerney, D. R. Wilhoit, and D. Mauri, Phys. Rev. B 43, 1297 (1991).

    Google Scholar 

  3. J. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

    Article  CAS  Google Scholar 

  4. N. Garcia, M. Munoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999).

    CAS  Google Scholar 

  5. H. D. Chopra and S.-Z. Hua, Phys. Rev. B 66, 020403 (2002).

    Google Scholar 

  6. S.-Z. Hua and H. D. Chopra, Phys. Rev. B 67, 060401 (2003).

    Google Scholar 

  7. For recent reviews of properties of doped manganites, see, for example, chapters by D. Khomskii and M. Viret in Spin Electronics, M. Ziese and M. J. Thornton (eds.) (Springer Verlag, Berlin, 2001).

    Google Scholar 

  8. S. A. Solin, T. Thio, D. R. Hines, and J. J. Heremans, Science, 289, 1530 (2000).

    Article  CAS  Google Scholar 

  9. T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).

    Google Scholar 

  10. H. A. M. van der Berg, W. Clemens, G. Gieres, G. Rupp, W. Schelter, and M. Vieth, IEEE Trans. Magn. 32, 4624(1996).

    Google Scholar 

  11. S. S. P. Parkin and D. Mauri, Phys. Rev. B 44, 7131 (1991).

    Google Scholar 

  12. W. H. Butler, O. Heinonen, and X.-G. Zhang, in The Physics of Ultra-High-Density Magnetic Recording, M. Plumer, J. van Ek, and D. Weller (eds.) (Springer Verlag, Berlin, 2001).

    Google Scholar 

  13. S. S. P. Parkin, K. P. Roche, M. G. Sammant, P. M. Rice, R. B. Beyers, R. E. Scheurlein, E. J. O’Sullivan, S. L. Brown, J. Bucchiganno, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouiloud, R. A. Wanner, and W. J. Gallagher, J. Appl. Phys. 85, 5828 (1999); R. C. Sousa, J. J. Sun, V. Soares, P. P. Freitas, A. Kling, M. F. da Silva, and J. C. Soares, Appl. Phys. Lett. 73, 3288 (1998); S. Cardoso, V. Gehanno, R. Ferreira, and P. P. Freitas, IEEE Trans. Magn. 35, 2952 (1999).

    Article  CAS  Google Scholar 

  14. For a recent introductory review, see, for example, D. D. Awschalom and J. M. Kikkawa Physics Today, June, 33 (1999).

    Google Scholar 

  15. For reviews of magnetic semiconductors, see, for example, H. Ohno, Science, 281, 951 (1998); H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999); J. Furydna and J. Kossut, in Diluted Magnetic Semiconductors, vol. 25 of Semiconductors and Semimetals (Academic Press, New York, 1988).

    Article  CAS  Google Scholar 

  16. D. J. Monsma, J. C. Lodder, Th. J. A. Popma, and B. Dieny, Phys. Rev. Lett. 74, 5260 (1995).

    Article  CAS  Google Scholar 

  17. S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Heinonen, O. (2004). Magnetoresistive Materials and Devices. In: Di Ventra, M., Evoy, S., Heflin, J.R. (eds) Introduction to Nanoscale Science and Technology. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/1-4020-7757-2_14

Download citation

  • DOI: https://doi.org/10.1007/1-4020-7757-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7720-3

  • Online ISBN: 978-1-4020-7757-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics