Skip to main content

Abstract

A broad range of wireless services of e.g., 100Mbps-to-1Gbps are demanded for the beyond 3 rd generation (3G) wireless mobile communications systems. Wireless channels for such high-speed data transmissions are characterized by severely frequency-selective channel, which is caused by many interfering paths with different time delays. Promising wireless access technique that can overcome the channel frequency-selectivity and even improve the transmission performance is code division multiple access (CDMA). There are two approaches in CDMA: multi-carrier (MC)-CDMA and single-carrier (SC)-CDMA (direct-sequence CDMA or DS-CDMA is another popular terminology, but in this Chapter, the terminology “SC-CDMA” is used). Both MC- and SC-CDMA techniques have flexibility for providing variable rate transmissions, yet retaining multiple access capability. Their special case is orthogonal frequency division multiplexing (OFDM) and non-spread single carrier (SC) transmission, respectively. A lot of attention has been paid to MC-CDMA. However, it was recently shown that SC-CDMA can achieve a good performance comparable to MC-CDMA if proper frequency-domain equalization (FDE) is adopted. In this chapter, various techniques for improving SC-CDMA transmission performance are presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Adachi, M. Sawahashi, and H. Suda, “Wideband DS-CDMA for next generation mobile communications systems,” IEEE Commun. Mag., Vol. 36, No. 9, pp. 56–69, Sept. 1998.

    Article  Google Scholar 

  2. Y. Kim, et al., “Beyond 3G: vision, requirements, and enabling technologies,” IEEE Commun. Mag., Vol. 41, No. 3, pp. 120–124, Mar. 2003.

    Article  Google Scholar 

  3. M. Helard, R. Le Gouable, J-F. Helard and J-Y. Baudais, “Multicarrier CDMA techniques for future wideband wireless networks,” Ann. Telecommun., vol. 56, pp. 260–274, 2001.

    Google Scholar 

  4. S. Hara and R. Prasad, “Overview of multicarrier CDMA,” IEEE Commun. Mag., Vol. 35, pp. 126–144, Dec. 1997.

    Article  Google Scholar 

  5. B. Sklar, “Rayleigh fading channels in mobile digital communication systems part 1: characterization,” IEEE Commun. Mag., pp. 90–100, July 1997.

    Google Scholar 

  6. F. Adachi and T. Sao, “Joint antenna diversity and frequency-domain equalization for multi-rate MC-CDMA,” IEICE Trans. Commun., Vol. E86-B, No. 11, pp. 3217–3224, Nov. 2003.

    Google Scholar 

  7. F. Adachi, D. Garg, S. Takaoka, and K. Takeda, “Broadband CDMA techniques,” IEEE Wireless Communications Magazine, Vol. 12, No. 2, pp. 8–18, Apr. 2005.

    Article  Google Scholar 

  8. F. Adachi and K. Takeda, “Bit error rate analysis of DS-CDMA with joint frequency-domain equalization and antenna diversity combining,” IEICE Trans. Commun., Vol. E87-B, pp. 2991–3002, Oct. 2004.

    Google Scholar 

  9. F. Adachi, T. Sao, and T. Itagaki, “Performance of multicode DS-CDMA using frequency domain equalization in a frequency selective fading channel,” Electronics Letters, Vol. 39, pp. 239–241, Jan. 2003.

    Article  Google Scholar 

  10. D. Falconer, S. L. Ariyavistakul, A. Benyamin-Seeyar, and B. Eidson, “Frequency domain equalization for single-carrier broadband wireless systems,” IEEE Commun. Mag., Vol. 40, pp. 58–66, Apr. 2002.

    Article  Google Scholar 

  11. N. Benvenuto and S. Tomasin, “On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter,” IEEE Trans. Commun., Vol. 50, No. 6, pp. 947–955, June 2002.

    Article  Google Scholar 

  12. A. M. Chan and G. W. Wornell, “A class of block-iterative equalizers for intersymbol interference channels: fixed channel results,” IEEE Trans. Commun., Vol. 49, No. 11, pp. 1966–1976, Nov. 2001.

    Article  MATH  Google Scholar 

  13. N. Benvenuto and S. Tomasin, “Block iterative DFE for single carrier modulation,” IEE Electronics Letters, Vol. 38, No. 19, pp. 1144–1145, Sept. 2002.

    Article  Google Scholar 

  14. S. Tomasin and N. Benvenuto, “A reduced complexity block iterative DFE for dispersive wireless applications,” Proc. 60th IEEE Veh. Technol. Conf. 2004 Fall, Los Angels, U.S.A., 26–29 Sept. 2004.

    Google Scholar 

  15. K. Takeda, K. Ishihara, and F. Adachi, “Downlink DS-CDMA transmission with joint MMSE equalization and ICI cancellation,” Proc. 63rd IEEE Veh. Technol. Conf. 2006-Spring, Melbourne, Australia, 7–10 May 2006.

    Google Scholar 

  16. R. T. Derryberry, S. D. Gray, D. M. Ionescu, G. Mandyam, and B. Raghothaman, “Transmit diversity in 3G CDMA systems,” IEEE Commun. Mag., Vol. 40, pp. 68–75, Apr. 2002.

    Article  Google Scholar 

  17. S. Alamouti, “A simple transmit diversity technique for wireless communications”, IEEE Journal on Selected Areas in Commun., Vol. 16, No. 8, pp. 1451–1458, Oct. 1998.

    Article  Google Scholar 

  18. E. G. Larsson and P. Stoica, Space–time block coding for wireless communications, Cambridge Univ. Press, Cambridge, UK, 2003.

    MATH  Google Scholar 

  19. D. Garg and F. Adachi, “Performance improvement with space-time transmit diversity using minimum mean square error combining equalization in MC-CDMA,” IEICE Trans. Commun., pp. 849–857, Mar. 2004.

    Google Scholar 

  20. N. Al-Dhahir, “Single-carrier frequency-domain equalization for space-time block-coded transmissions over frequency-selective fading channels,” IEEE Commun., Lett., Vol. 5, No. 7, pp. 304–306, July 2001.

    Article  Google Scholar 

  21. F. W. Vook, T. A. Thomas, and K. L. Baum, “Cyclic-prefix CDMA with antenna diversity,” Proc. 55th IEEE Veh. Technol. Conf. 2002-Spring, pp. 1002–1006, May 2002.

    Google Scholar 

  22. K. Takeda, T. Itagaki, and F. Adachi, “Application of space-time transmit diversity to single-carrier transmission with frequency-domain equalization and receive antenna diversity in a frequency-selective fading channel,” IEE Proceedings Communications, Vol. 151, No. 6, pp. 627–632, Dec. 2004.

    Article  Google Scholar 

  23. W. Su, X. G. Xia, and K. J. R. Liu, “A systematic design of high-rate complex orthogonal space-time block codes,” IEEE Commun. Lett., Vol. 8, No. 6, pp. 380–382, June 2004.

    Article  Google Scholar 

  24. F. Adachi, “Wireless past and future-evolving mobile communications systems,” IEICE Trans. Fundamentals, Vol. E84-A, pp. 55–60, Jan. 2001.

    Google Scholar 

  25. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas”, Wireless Personal Communications, Kluwer, Vol. 6, No. 3, pp. 311–335, 1998.

    Article  Google Scholar 

  26. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Lab. Tech. Journal, Vol. 1, No. 2, pp. 41–59, 1996.

    Article  Google Scholar 

  27. T. Matsumoto, J. Ylitalo, and M. Juntti, “Overview and recent challenges of MIMO system,” IEEE Vehicular Technology Society News, pp. 4–9, May 2003.

    Google Scholar 

  28. J. G. Proakis, Digital Communications, 4th edition, McGraw-Hill, 2001.

    Google Scholar 

  29. P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel,” Proc. ISSSE, pp. 295–300, 1998.

    Google Scholar 

  30. W. C., Jakes Jr., Ed., Microwave mobile communications, Wiley, New York, 1974.

    Google Scholar 

  31. A. Nakajima, D. Garg, and F. Adachi, “Frequency-domain Iterative Parallel Interference Cancellation for Multicode DS-CDMA-MIMO Multiplexing,” Proc. IEEE 62nd Veh. Technol. Conf., Dallas, U.S.A., 26–28 Sept. 2005.

    Google Scholar 

  32. S. Haykin, Adaptive filter theory, 4th edition, Prentice Hall, 2001.

    Google Scholar 

  33. Z. Wang and G. B. Giannakis, “Block precoding for MUI/ISI-resilient generalized multicarrier CDMA with multirate capabilities,” IEEE Trans. Commun., Vol. 49, No. 11, pp. 2016–2027, Nov. 2001.

    Article  Google Scholar 

  34. S. Tsumura, S. Hara, and Y. Hara, “Performance comparison of MC-CDMA and cyclically prefixed DS-CDMA in an uplink channel,” Proc. IEEE VTC’ 04 Fall, Los Angeles, USA, pp. 414–418, Sept. 2004.

    Google Scholar 

  35. X. D. Wang and H. V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., Vol. 47, No. 7, pp. 1046–1061, July 1999.

    Article  Google Scholar 

  36. S. Zhou, G. B. Giannakis, and C. L. Martret, “Chip-interleaved block-spread code division multiple access,” IEEE Trans. Commun., Vol. 50, No. 2, Feb. 2002.

    Google Scholar 

  37. X. Peng, F. Chin, T. T. Tjhung, and A. S. Madhukumar, “A simplified transceiver structure for cyclic extended CDMA system with frequency domain equalization,” Proc. IEEE VTC’05 Spring, Sweden, pp. 1565–1569, May 2005.

    Google Scholar 

  38. T. Ottosson and A. Svensson, “On schemes for multirate support in DS/CDMA,” J. Wireless Personal Commun., Vol. 6, No. 3, pp. 265–287, Mar. 1998.

    Article  Google Scholar 

  39. F. Adachi, M. Sawahashi, and K. Okawa, “Tree-structured generation of orthogonal spreading code with different lengths for foward link of DS-CDMA mobile radio,” IEE Electron. Lett., Vol. 33, No. 1, pp. 27–28, Jan. 1997.

    Article  Google Scholar 

  40. L. Liu and F. Adachi, “2-dimensional OVSF spreading for chip-interleaved DS-CDMA uplink transmission,” Proc. WPMC’05, Aalborg, Denmark, 19–22 Sept. 2005.

    Google Scholar 

  41. L. Liu and F. Adachi, “2-dimensional OVSF Spread/Chip-interleaved CDMA,” IEICE Trans. Commun., conditioned accepted.

    Google Scholar 

  42. R. H. Morelos-Zaragoza, The art of error correcting codes, Wiley, 2002.

    Google Scholar 

  43. S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications, Prentice Hall, Inc., 1983.

    Google Scholar 

  44. D. Chase, “Code combining- A maximum likelihood decoding approach for combing and arbitrary number of noisy packets,” IEEE Trans. Commun., Vol. COM-33, No. 5, pp. 385–393, May 1985.

    Article  Google Scholar 

  45. J. Hagenauer, “Rate-compatible punctured convolutional codes (RCPC codes) and their application,” IEEE Trans. Commun., Vol. 36, No. 4, pp. 389–400, April 1988.

    Article  Google Scholar 

  46. D. N. Rowitch and L. B. Milstein, “Rate compatible punctured turbo (RCPT) codes in hybrid FEC/ARQ system,” Proc. Comm. Theory Mini-conference, IEEE GLOBECOM’97, pp. 55–59, Nov. 1997.

    Google Scholar 

  47. T. Ji and W. E. Stark, “Turbo-coded ARQ schemes for DS-CDMA data networks over fading and shadowing channels: throughput, delay and energy efficiency,” IEEE Journal on Selected Areas in Commun., Vol. 18, No. 8, pp. 1355–1364, Aug. 2000.

    Article  Google Scholar 

  48. D. Garg and F. Adachi, “DS-CDMA with frequency-domain equalization for high speed downlink packet access,” Journal on Selected Areas in Communications, Vol. 24, No. 1, pp. 161–170, Jan. 2006.

    Article  Google Scholar 

  49. D. Garg and F. Adachi, “Throughput comparison of turbo-coded HARQ in OFDM, MC-CDMA and DS-CDMA with frequency-domain equalization,” IEICE Trans. on Commun., Vol. E88-B, No. 2, pp. 664–677, Feb. 2005.

    Article  Google Scholar 

  50. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit wrror-correcting coding and ecoding:Turbo codes,” Proc. IEEE ICC, pp. 1064–1070, Geneva, May 1993.

    Google Scholar 

  51. C. Berrou, “The ten-year-old turbo codes are entering into service,” IEEE Commun. Mag., Vol. 41, No. 8, pp. 110–116, Aug. 2003.

    Article  Google Scholar 

  52. J. P. Woodard and L. Hanzo, “Comparative study of turbo decoding techniques: an overview,” IEEE Trans. Veh. Technol., Vol. 49, No. 6, pp. 2208–2233, Nov. 2000.

    Article  Google Scholar 

  53. D. Divsalar and F. Pollara, “Turbo codes for PCS applications,” Proc. IEEE ICC’95, pp. 54–59, Seattle, Washington, June 1995.

    Google Scholar 

  54. P. Robertson, E. Villebrum, and P. Hoeher, “A comparison of optimal and sub-optical MAP decoding algorithms operating in the log domain,” Proc. IEEE ICC’95, pp. 1009–1013, Seattle WA, June 1995.

    Google Scholar 

  55. J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. on Info. Theory, Vol. 42, No. 2, pp. 429–445, Mar. 1999.

    Article  Google Scholar 

  56. B. Sklar, “A primer on turbo code concepts,” IEEE Commun. Mag., Vol. 35, No.12, pp. 94–101, Dec. 1997.

    Article  Google Scholar 

  57. C. Heegard and S. B. Wicker, Turbo coding, Kluwer Academic Publishers, 1999.

    Google Scholar 

  58. L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. on Inf. Theory, pp. 284–287, March 1974.

    Google Scholar 

  59. F. Adachi, K. Ohono, A. Higuchi, T. Dohi, and Y. Okumura, “Coherent multicode DS-CDMA mobile radio,” IEICE Trans. Commun., Vol. E79-B, No. 9, pp. 1316–1325, Sept. 1996.

    Google Scholar 

  60. A. Stefanov and T. Duman, “Turbo coded modulation for wireless communications with antenna diversity,” Proc. IEEE VTC99-Fall, pp. 1565–1569, Netherlands, Sept. 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Adachi, F., Garg, D., Nakajima, A., Takeda, K., Liu, L., Tomeba, H. (2007). Fundamentals of Single-Carrier CDMA Technologies. In: Park, Y., Adachi, F. (eds) Enhanced Radio Access Technologies for Next Generation Mobile Communication. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5532-3_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5532-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5531-7

  • Online ISBN: 978-1-4020-5532-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics