Skip to main content

Fungal ß-Glucans and their Receptors

  • Chapter
Immunology of Fungal Infections
  • 1042 Accesses

Abstract

ß-Glucans are predominant carbohydrates found in the cell wall of many fungi which possess immune-modulating activities. Recognition of these carbohydrates is thought to occur via multiple receptors and at least four different receptors have been identified, including Dectin-1, complement receptor 3, lactosylceramide, and scavenger receptors. There is growing evidence that ß-glucan recognition is an important component of anti-fungal immunity, but may also contribute to development of certain diseases. In this chapter we will review each of these aspects, highlighting the roles of ß-glucans and their receptors in fungal recognition and immunity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, Y., Ishii, T., Ikeda, Y., Hoshino, A., Tamura, H., Aketagawa, J., Tanaka, S. and Ohno, N. (2004) Characterization of beta-Glucan Recognition Site on C-Type Lectin, Dectin 1. Infect. Immun. 72, 4159–4171.

    Article  PubMed  CAS  Google Scholar 

  • Adams, D.S., Pero, S.C., Petro, J.B., Nathans, R., Mackin, W.M. and Wakshull, E. (1997) PGG-Glucan activates NF-kappaB-like and NF-IL-6-like transcription factor complexes in a murine monocytic cell line. J. Leukoc. Biol. 62, 865–873.

    PubMed  CAS  Google Scholar 

  • Ariizumi, K., Shen, G.L., Shikano, S., Xu, S., Ritter, R., 3rd, Kumamoto, T., Edelbaum, D., Morita, A., Bergstresser, P.R. and Takashima, A. (2000) Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 275, 20157–20167.

    Article  PubMed  CAS  Google Scholar 

  • Battle, J., Ha, T., Li, C., Della Beffa, V., Rice, P., Kalbfleisch, J., Browder, W. and Williams, D. (1998) Ligand binding to the (1->3)-beta-D-glucan receptor stimulates NFkappaB activation, but not apoptosis in U937 cells. Biochem. Biophys. Res. Commun. 249, 499–504.

    Article  PubMed  CAS  Google Scholar 

  • Belkaid, Y. and Rouse, B.T. (2005) Natural regulatory T cells in infectious disease. Nat. Immunol. 6, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Bohn, J.A. and BeMiller, J.N. (1995) (1->3)-beta-D-glucans as biological response modifiers: A review of structure-functional activity relationships. Carbohydrate Polymers 28, 3–14.

    Article  CAS  Google Scholar 

  • Borges-Walmsley, M.I., Chen, D., Shu, X. and Walmsley, A.R. (2002) The pathobiology of Paracoccidioides brasiliensis. Trends Microbiol. 10, 80–87.

    Article  PubMed  CAS  Google Scholar 

  • Brandhorst, T.T., Wuthrich, M., Finkel-Jimenez, B., Warner, T. and Klein, B.S. (2004) Exploiting type 3 complement receptor for TNF-alpha suppression, immune evasion, and progressive pulmonary fungal infection. J. Immunol. 173, 7444–7453.

    PubMed  CAS  Google Scholar 

  • Brown, G.D. (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat. Rev. Immunol. 6, 33–43.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.D. and Gordon, S. (2001) Immune recognition: A new receptor for beta-glucans. Nature 413, 36–37.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.D. and Gordon, S. (2003) Fungal beta-glucans and mammalian immunity. Immunity 19, 311–315.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.D., Herre, J., Williams, D.L., Willment, J.A., Marshall, A.S.J. and Gordon, S. (2003) Dectin-1 mediates the biological effects of beta-glucan. J. Exp. Med. 197, 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Brown, G.D., Taylor, P.R., Reid, D.M., Willment, J.A., Williams, D.L., Martinez-Pomares, L., Wong, S.Y.C. and Gordon, S. (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 296, 407–412.

    Article  Google Scholar 

  • Bullock, W.E. and Wright, S.D. (1987) Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. J. Exp. Med. 165, 195–210.

    Article  PubMed  CAS  Google Scholar 

  • Coppolino, M.G. and Dedhar, S. (2000) Bi-directional signal transduction by integrin receptors. Int. J. Biochem. Cell Biol. 32, 171–188.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, D.E., Allendorf, D.J., Baran, J.T., Hansen, R., Marroquin, J., Li, B., Ratajczak, J., Ratajczak, M.Z. and Yan, J. (2006) Beta-glucan enhances complement-mediated hematopoietic recovery after bone marrow injury. Blood 107, 835–840.

    Article  PubMed  CAS  Google Scholar 

  • Cross, C.E. and Bancroft, G.J. (1995). Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63, 2604–2611.

    PubMed  CAS  Google Scholar 

  • Crowley, M.T., Costello, P.S., Fitzer-Attas, C.J., Turner, M., Meng, F., Lowell, C., Tybulewicz, V.L. and DeFranco, A.L. (1997) A critical role for Syk in signal transduction and phagocytosis mediated by Fcgamma receptors on macrophages. J. Exp. Med. 186, 1027–1039.

    Article  PubMed  CAS  Google Scholar 

  • Czop, J.K. (1986) The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic activation. Pathol. Immunopathol. Res. 5, 286–296.

    Article  PubMed  CAS  Google Scholar 

  • d’Ostiani, C.F., Del Sero, G., Bacci, A., Montagnoli, C., Spreca, A., Mencacci, A., Ricciardi-Castagnoli, P. and Romani, L. (2000) Dendritic cells discriminate between yeasts and hyphae of the fungus Candida albicans. Implications for initiation of T helper cell immunity in vitro and in vivo. J. Exp. Med. 191, 1661–1674.

    Article  PubMed  CAS  Google Scholar 

  • Di Carlo, F.J. and Fiore, J.V. (1958) On the composition of zymosan. Science 127, 756–757.

    Article  Google Scholar 

  • Diamond, M.S., Garcia-Aguilar, J., Bickford, J.K., Corbi, A.L. and Springer, T.A. (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J. Cell Biol. 120, 1031–1043.

    Article  PubMed  CAS  Google Scholar 

  • Douwes, J. (2005) (1->3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15, 160–169.

    Article  PubMed  CAS  Google Scholar 

  • Dushkin, M.I., Safina, A.F., Vereschagin, E.I. and Schwartz, Y. (1996) Carboxymethylated beta-1, 3-glucan inhibits the binding and degradation of acetylated low density lipoproteins in macrophages in vitro and modulates their plasma clearance in vivo. Cell Biochem. Funct. 14, 209–217.

    PubMed  CAS  Google Scholar 

  • Ehlers, M.R. (2000). CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2, 289–294.

    Article  PubMed  CAS  Google Scholar 

  • Elomaa, O., Kangas, M., Sahlberg, C., Tuukkanen, J., Sormunen, R., Liakka, A., Thesleff, I., Kraal, G. and Tryggvason, K. (1995) Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609.

    Article  PubMed  CAS  Google Scholar 

  • Evans, S.E., Hahn, P.Y., McCann, F., Kottom, T.J., Pavlovic, Z.V. and Limper, A.H. (2005) Pneumocystis cell wall beta-glucans stimulate alveolar epithelial cell chemokine generation through nuclear factor-kappaB-dependent mechanisms. Am. J. Respir. Cell Mol. Biol. 32, 490–497.

    Article  PubMed  CAS  Google Scholar 

  • Firestein, G.S. (2003) Evolving concepts of rheumatoid arthritis. Nature 423, 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine, T., Simenel, C., Dubreucq, G., Adam, O., Delepierre, M., Lemoine, J., Vorgias, C.E., Diaquin, M. and Latge, J.P. (2000) Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Biol. Chem. 275, 27594–27607.

    PubMed  CAS  Google Scholar 

  • Forsyth, C.B. and Mathews, H.L. (2002) Lymphocyte adhesion to Candida albicans. Infect. Immun. 70, 517–527.

    Article  PubMed  CAS  Google Scholar 

  • Forsyth, C.B., Plow, E.F. and Zhang, L. (1998) Interaction of the fungal pathogen Candida albicans with integrin CD11b/CD18: recognition by the I domain is modulated by the lectin-like domain and the CD18 subunit. J. Immunol. 161, 6198–6205.

    PubMed  CAS  Google Scholar 

  • Gale, C.A., Bendel, C.M., McClellan, M., Hauser, M., Becker, J.M., Berman, J. and Hostetter, M.K. (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355–1358.

    Article  PubMed  CAS  Google Scholar 

  • Gantner, B.N., Simmons, R.M., Canavera, S.J., Akira, S. and Underhill, D.M. (2003) Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2. J. Exp. Med. 197, 1107–1117.

    Article  PubMed  CAS  Google Scholar 

  • Gantner, B.N., Simmons, R.M. and Underhill, D.M. (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. Embo. J. 24, 1277–1286.

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek, T.B., Groot, P.C., Nolte, M.A., van Vliet, S.J., Gangaram-Panday, S.T., van Duijnhoven, G.C., Kraal, G., van Oosterhout, A.J. and van Kooyk, Y. (2002) Marginal zone macrophages express a murine homologue of DC-SIGN that captures blood-borne antigens in vivo. Blood 100, 2908–2916.

    Article  PubMed  CAS  Google Scholar 

  • Gersuk, G.M., Underhill, D.M., Zhu, L. and Marr, K.A. (2006) Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J. Immunol. 176, 3717–3724.

    PubMed  CAS  Google Scholar 

  • Giancotti, F.G. and Ruoslahti, E. (1999) Integrin signaling. Science 285, 1028–1032.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, R. (1988) Characteristics of the beta-glucan receptor of murine macrophages. Exp. Cell Res. 174, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Gow, N.A., Brown, A.J. and Odds, F.C. (2002) Fungal morphogenesis and host invasion. Curr. Opin. Microbiol. 5, 366–371.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, P.Y., Evans, S.E., Kottom, T.J., Standing, J.E., Pagano, R.E. and Limper, A.H. (2003) Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J. Biol. Chem. 278, 2043–2050.

    Article  PubMed  CAS  Google Scholar 

  • Harler, M.B., Wakshull, E., Filardo, E.J., Albina, J.E. and Reichner, J.S. (1999) Promotion of neutrophil chemotaxis through differential regulation of beta 1 and beta 2 integrins. J. Immunol. 162, 6792–6799.

    PubMed  CAS  Google Scholar 

  • Heinsbroek, S.E., taylor, P.R., Rosas, M., Willment, J.A., Williams, D.L., Gordon, S. and Brown, G.D. (2006) Expression of functionally different Dectin-1 isoforms by murine macrophages. J. Immunol. (in Press).

    Google Scholar 

  • Herre, J., Marshall, A.J., Caron, E., Edwards, A.D., Williams, D.L., Schweighoffer, E., Tybulewicz, V.L., Reis e Sousa, C., Gordon, S. and Brown, G.D. (2004) Dectin-1 utilizes novel mechanisms for yeast phagocytosis in macrophages. Blood 104, 4038–4045.

    Article  PubMed  CAS  Google Scholar 

  • Hohl, T.M., Van Epps, H.L., Rivera, A., Morgan, L.A., Chen, P.L., Feldmesser, M. and Pamer, E.G. (2005) Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific beta-Glucan Display. PLoS Pathog. 1, e30.

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi, K. and Nagaoka, I. (2002) Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils. Blood 100, 1454–1464.

    PubMed  CAS  Google Scholar 

  • Janeway, C.A. Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 13, 11–16.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez-Lucho, V., Ginsburg, V. and Krivan, H.C. (1990). Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosylceramide (Gal beta 1-4Glc beta 1-1Cer), a possible adhesion receptor for yeasts. Infect. Immun. 58, 2085–2090.

    PubMed  CAS  Google Scholar 

  • Karlsson, K.A. (1989) Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58, 309–350.

    Article  PubMed  CAS  Google Scholar 

  • Keystone, E.C., Schorlemmer, H.U., Pope, C. and Allison, A.C. (1977) Zymosan-induced arthritis: a model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 20, 1396–1401.

    Article  PubMed  CAS  Google Scholar 

  • Klis, F.M., de Groot, P. and Hellingwerf, K. (2001) Molecular organization of the cell wall of Candida albicans. Med. Mycol. 39 (Suppl 1), 1–8.

    PubMed  CAS  Google Scholar 

  • Klis, F.M., Mol, P., Hellingwerf, K. and Brul, S. (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26, 239–256.

    Article  PubMed  CAS  Google Scholar 

  • Kougias, P., Wei, D., Rice, P.J., Ensley, H.E., Kalbfleisch, J., Williams, D.L. and Browder, I.W. (2001) Normal human fibroblasts express pattern recognition receptors for fungal (1–>3)-beta-D-glucans. Infect. Immun. 69, 3933–3938.

    Article  PubMed  CAS  Google Scholar 

  • Lanier, L.L., Corliss, B.C., Wu, J., Leong, C. and Phillips, J.H. (1998) Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells. Nature 391, 703–707.

    Article  PubMed  CAS  Google Scholar 

  • Leblanc, B.W., Albina, J.E. and Reichner, J.S. (2006) The effect of PGG-{beta}-glucan on neutrophil chemotaxis in vivo. J. Leukoc. Biol. 79, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.J., Zheng, N.Y., Clavijo, M. and Nussenzweig, M.C. (2003) Normal Host Defense during Systemic Candidiasis in Mannose Receptor-Deficient Mice. Infect. Immun. 71, 437–445.

    Article  PubMed  CAS  Google Scholar 

  • Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A. and Fink, G.R. (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.

    Article  PubMed  CAS  Google Scholar 

  • Marth, T. and Kelsall, B.L. (1997) Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185, 1987–1995.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, T., Kohno, S., Mitsutake, K., Maesaki, S., Tanaka, K., Ishikawa, N. and Hara, K. (1995) Plasma (1->3)-beta-D-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. J. Clin. Microbiol. 33, 3115–3118.

    PubMed  CAS  Google Scholar 

  • Montagnoli, C., Bacci, A., Bozza, S., Gaziano, R., Mosci, P., Sharpe, A.H. and Romani, L. (2002) B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J. Immunol. 169, 6298–6308.

    PubMed  CAS  Google Scholar 

  • Mouyna, I., Morelle, W., Vai, M., Monod, M., Lechenne, B., Fontaine, T., Beauvais, A., Sarfati, J., Prevost, M.C., Henry, C. and Latge, J.P. (2005) Deletion of GEL2 encoding for a beta (1-3)glucanosyltransferase affects morphogenesis and virulence in Aspergillus fumigatus. Mol. Microbiol. 56, 1675–1688.

    Article  PubMed  CAS  Google Scholar 

  • Mueller, A., Raptis, J., Rice, P.J., Kalbfleisch, J.H., Stout, R.D., Ensley, H.E., Browder, W. and Williams, D.L. (2000) The influence of glucan polymer structure and solution conformation on binding to (1->3)-beta-D-glucan receptors in a human monocyte-like cell line. Glycobiology 10, 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay, S. and Gordon, S. (2004) The role of scavenger receptors in pathogen recognition and innate immunity. Immunobiology 209, 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Muller, A., Rice, P.J., Ensley, H.E., Coogan, P.S., Kalbfleish, J.H., Kelley, J.L., Love, E.J., Portera, C.A., Ha, T., Browder, I. W. and Williams, D.L. (1996) Receptor binding and internalization of a water-soluble (1->3)-beta-D- glucan biologic response modifier in two monocyte/macrophage cell lines. J. Immunol. 156, 3418–3425.

    PubMed  CAS  Google Scholar 

  • Netea, M.G., Sutmuller, R., Hermann, C., Van der Graaf, C.A., Van der Meer, J.W., van Krieken, J.H., Hartung, T., Adema, G. and Kullberg, B.J. (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J. Immunol. 172, 3712–3718.

    PubMed  CAS  Google Scholar 

  • Nono, I., Ohno, N., Masuda, A., Oikawa, S. and Yadomae, T. (1991) Oxidative degradation of an antitumor (1-3)-beta-D-glucan, grifolan. J. Pharmacobiodyn. 14, 9–19.

    PubMed  CAS  Google Scholar 

  • Obayashi, T., Yoshida, M., Mori, T., Goto, H., Yasuoka, A., Iwasaki, H., Teshima, H., Kohno, S., Horiuchi, A., Ito, A. and et al. (1995) Plasma (1->3)-beta-D-glucan measurement in diagnosis of invasive deep mycosis and fungal febrile episodes. Lancet 345, 17–20.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani, K., Suzuki, Y., Eda, S., Kawai, T., Kase, T., Keshi, H., Sakai, Y., Fukuoh, A., Sakamoto, T., Itabe, H., et al. (2001) The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. J. Biol. Chem. 276, 44222–44228.

    Article  PubMed  CAS  Google Scholar 

  • Ozinsky, A., Underhill, D.M., Fontenot, J.D., Hajjar, A.M., Smith, K.D., Wilson, C.B., Schroeder, L. and Aderem, A. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. U.S.A. 97, 13766–13771.

    Article  PubMed  CAS  Google Scholar 

  • Palma, A.S., Feizi, T., Zhang, Y., Stoll, M.S., Lawson, A.M., Diaz-Rodriguez, E., Campanero-Rhodes, M.A., Costa, J., Gordon, S., Brown, G.D. and Chai, W. (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J. Biol. Chem. 281, 5771–5779.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, A., Lux, A. and Krieger, M. (1995) Expression cloning of dSR-CI, a class C macrophage-specific scavenger receptor from Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 92, 4056–4060.

    Article  PubMed  CAS  Google Scholar 

  • Peiser, L., Mukhopadhyay, S. and Gordon, S. (2002) Scavenger receptors in innate immunity. Curr. Opin. Immunol. 14, 123–128.

    Article  PubMed  CAS  Google Scholar 

  • Plow, E.F. and Zhang, L. (1997) A MAC-1 attack: integrin functions directly challenged in knockout mice. J. Clin. Invest. 99, 1145–1146.

    PubMed  CAS  Google Scholar 

  • Reid, D.M., Montoya, M., Taylor, P.R., Borrow, P., Gordon, S., Brown, G.D. and Wong, S.Y. (2004) Expression of the {beta}-glucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J. Leukoc. Biol. 76, 86–94.

    Article  PubMed  CAS  Google Scholar 

  • Rice, P.J., Kelley, J.L., Kogan, G., Ensley, H.E., Kalbfleisch, J.H., Browder, I.W. and Williams, D.L. (2002) Human monocyte scavenger receptors are pattern recognition receptors for (1->3)-beta-D-glucans. J. Leukoc. Biol. 72, 140–146.

    PubMed  CAS  Google Scholar 

  • Riggi, S.J. and Di Luzio, N.R. (1961) Identification of a reticuloendothelial stimulating agent in zymosan. Am. J. Physiol. 200, 297–300.

    PubMed  CAS  Google Scholar 

  • Rogers, N.C., Slack, E.C., Edwards, A.D., Nolte, M.A., Schulz, O., Schweighoffer, E., Williams, D.L., Gordon, S., Tybulewicz, V.L., Brown, G.D. and Reis e Sousa, C. (2005) Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C-type lectins. Immunity 22, 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Romani, L. (2004) Immunity to fungal infections. Nat. Rev. Immunol. 4, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Ross, G.D. (2000) Regulation of the adhesion versus cytotoxic functions of the Mac-1/CR3/alphaMbeta2-integrin glycoprotein. Crit. Rev. Immunol. 20, 197–222.

    PubMed  CAS  Google Scholar 

  • Ross, G.D., Cain, J.A. and Lachmann, P.J. (1985) Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin and functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J. Immunol. 134, 3307–3315.

    PubMed  CAS  Google Scholar 

  • Ross, G.D., Vetvicka, V., Yan, J., Xia, Y. and Vetvickova, J. (1999) Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 42, 61–74.

    Article  PubMed  CAS  Google Scholar 

  • Rylander, R. and Lin, R.H. (2000) (1->;3)-beta-D-glucan - relationship to indoor air-related symptoms, allergy and asthma. Toxicology 152, 47–52.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, N., Takahashi, T., Hata, H., Nomura, T., Tagami, T., Yamazaki, S., Sakihama, T., Matsutani, T., Negishi, I., Nakatsuru, S. and Sakaguchi, S. (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460.

    Article  PubMed  CAS  Google Scholar 

  • Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K. and Kimoto, M. (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777–1782.

    Article  PubMed  CAS  Google Scholar 

  • Steele, C., Marrero, L., Swain, S., Harmsen, A.G., Zheng, M., Brown, G.D., Gordon, S., Shellito, J.E. and Kolls, J.K. (2003) Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 b-glucan recptor. J. Exp. Med. 198, 1677–1688.

    Article  PubMed  CAS  Google Scholar 

  • Steele, C., Rapaka, R.R., Metz, A., Pop, S.M., Williams, D.L., Gordon, S., Kolls, J.K. and Brown, G.D. (2005) The Beta-Glucan Receptor Dectin-1 Recognizes Specific Morphologies of Aspergillus fumigatus. PLoS Pathog. 1, e42.

    Article  PubMed  CAS  Google Scholar 

  • Suda, M., Ohno, N., Hashimoto, T., Koizumi, K., Adachi, Y. and Yadomae, T. (1996) Kupffer cells play important roles in the metabolic degradation of a soluble anti-tumor (1->3)-beta-D-glucan, SSG, in mice. FEMS Immunol. Med. Microbiol. 15, 93–100.

    PubMed  CAS  Google Scholar 

  • Suram, S., Brown, G.D., Ghosh, M., Gordon, S., Loper, R., Taylor, P.R., Akira, S., Uematsu, S., Williams, D.L. and Leslie, C.C. (2006) Regulation of cytosolic phospholipase A2 activation and cyclooxygenase 2 expression in macrophages by the beta-glucan receptor. J. Biol. Chem. 281, 5506–5514.

    Article  PubMed  CAS  Google Scholar 

  • Swain, S.D., Lee, S.J., Nussenzweig, M.C. and Harmsen, A.G. (2003) Absence of the macrophage mannose receptor in mice does not increase susceptibility to Pneumocystis carinii infection in vivo. Infect. Immun. 71, 6213–6221.

    Article  PubMed  CAS  Google Scholar 

  • Taborda, C.P. and Casadevall, A. (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16, 791–802.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, H., Ohno, N., Adachi, Y. and Yadomae, T. (2001) Association of immunological disorders in lethal side effect of NSAIDs on beta-glucan-administered mice. FEMS Immunol. Med. Microbiol. 31, 1–14.

    PubMed  CAS  Google Scholar 

  • Taylor, P.R., Brown, G.D., Herre, J., Williams, D.L., Willment, J.A. and Gordon, S. (2004) The role of SIGNR1 and the beta-glucan receptor (Dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J. Immunol. 172, 1157–1162.

    PubMed  CAS  Google Scholar 

  • Taylor, P.R., Brown, G.D., Reid, D.M., Willment, J.A., Martinez-Pomares, L., Gordon, S. and Wong, S.Y.C. (2002) The beta-glucan receptor, Dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J. Immunol. 269, 3876–3882.

    Google Scholar 

  • Taylor, P.R., Martinez-Pomares, L., Stacey, M., Lin, H.H., Brown, G.D. and Gordon, S. (2005) Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, B.P., Vetvicka, V., Pitman, M., Goldman, R.C. and Ross, G.D. (1996) Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156, 1235–1246.

    PubMed  CAS  Google Scholar 

  • Torosantucci, A., Bromuro, C., Chiani, P., De Bernardis, F., Berti, F., Galli, C., Norelli, F., Bellucci, C., Polonelli, L., Costantino, P., et al. (2005) A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597–606.

    Article  PubMed  CAS  Google Scholar 

  • Tsikitis, V.L., Morin, N.A., Harrington, E.O., Albina, J.E. and Reichner, J.S. (2004) The lectin-like domain of complement receptor 3 protects endothelial barrier function from activated neutrophils. J. Immunol. 173, 1284–1291.

    PubMed  CAS  Google Scholar 

  • Turner, M., Mee, P.J., Costello, P.S., Williams, O., Price, A.A., Duddy, L.P., Furlong, M.T., Geahlen, R.L. and Tybulewicz, V.L. (1995) Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302.

    Article  PubMed  CAS  Google Scholar 

  • Tzianabos, A.O. (2000) Polysaccharide immunomodulators as therapeutic agents: structural aspects and biologic function. Clin. Microbiol. Rev. 13, 523–533.

    Article  PubMed  CAS  Google Scholar 

  • Umeyama, T., Kaneko, A., Watanabe, H., Hirai, A., Uehara, Y., Niimi, M. and Azuma, M. (2006) Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect. Immun. 74, 2373–2381.

    Article  PubMed  CAS  Google Scholar 

  • Underhill, D.M., Ozinsky, A., Hajjar, A.M., Stevens, A., Wilson, C.B., Bassetti, M. and Aderem, A. (1999) The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811–815.

    Article  PubMed  CAS  Google Scholar 

  • Underhill, D.M., Rossnagle, E., Lowell, C.A. and Simmons, R.M. (2005) Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543–2550.

    Article  PubMed  CAS  Google Scholar 

  • Van den Herik-Oudijk, I.E., Capel, P.J., van der Bruggen, T. and Van de Winkel, J.G. (1995) Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 85, 2202–2211.

    PubMed  Google Scholar 

  • Vazquez-Torres, A., Jones-Carson, J., Wagner, R.D., Warner, T. and Balish, E. (1999) Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun. 67, 670–674.

    PubMed  CAS  Google Scholar 

  • Vereschagin, E. I., van Lambalgen, A. A., Dushkin, M. I., Schwartz, Y.S., Polyakov, L., Heemskerk, A., Huisman, E., Thijs, L.G. and van den Bos, G.C. (1998) Soluble glucan protects against endotoxin shock in the rat: the role of the scavenger receptor. Shock 9, 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Vetvicka, V., Thornton, B.P. and Ross, G.D. (1996) Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells [see comments]. J. Clin. Invest. 98, 50–61.

    Article  PubMed  CAS  Google Scholar 

  • Viriyakosol, S., Fierer, J., Brown, G.D. and Kirkland, T.N. (2005) Innate immunity to the pathogenic fungus Coccidioides posadasii is dependent on Toll-like receptor 2 and Dectin-1. Infect. Immun. 73, 1553–1560.

    Article  PubMed  CAS  Google Scholar 

  • von Dungren, E. (1900) Beitrage zur Immunitatslehre. Munch. Med. Woch. 47, 677–681.

    Google Scholar 

  • Wakshull, E., Brunke-Reese, D., Lindermuth, J., Fisette, L., Nathans, R.S., Crowley, J.J., Tufts, J.C., Zimmerman, J., Mackin, W. and Adams, D.S. (1999) PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology 41, 89–107.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, R.T., Kupiec, M., Magnelli, P., Abeijon, C. and Fink, G.R. (2003) A Saccharomyces cerevisiae mutant with increased virulence. Proc. Natl. Acad. Sci. U.S.A.

    Google Scholar 

  • Williams, D.L., Mueller, A. and Browder, W. (1996) Glucan-based macrophage stimulators. Clinical Immunotherapy 5, 392–399.

    Google Scholar 

  • Willment, J.A., Gordon, S. and Brown, G.D. (2001) Characterisation of the human {beta}-glucan receptor and its alternatively spliced isoforms. J. Biol. Chem. 276, 43818–43823.

    Article  PubMed  CAS  Google Scholar 

  • Willment, J.A., Lin, H.H., Reid, D.M., Taylor, P.R., Williams, D.L., Wong, S.Y.C., Gordon, S. and Brown, G.D. (2003) Dectin-1 expression and function is enhanced on alternatively activated and GM-CSF treated macrophages and negatively regulated by IL-10, dexamethasone and LPS. J. Immunol. 171, 4569–4573.

    PubMed  CAS  Google Scholar 

  • Willment, J.A., Marshall, A.S., Reid, D.M., Williams, D.L., Wong, S.Y., Gordon, S. and Brown, G.D. (2005) The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immunol. 35, 1539–1547.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S.D. and Silverstein, S.C. (1982) Tumor-promoting phorbol esters stimulate C3b and C3b' receptor-mediated phagocytosis in cultured human monocytes. J. Exp. Med. 156, 1149–1164.

    Article  PubMed  CAS  Google Scholar 

  • Wright, S.D. and Silverstein, S.C. (1983) Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J. Exp. Med. 158, 2016–2023.

    Article  PubMed  CAS  Google Scholar 

  • Xia, Y., Borland, G., Huang, J., Mizukami, I.F., Petty, H.R., Todd, R.F. 3rd. and Ross, G.D. (2002) Function of the lectin domain of Mac-1/complement receptor type 3 (CD11b/CD18) in regulating neutrophil adhesion. J. Immunol. 169, 6417–6426.

    PubMed  CAS  Google Scholar 

  • Xia, Y., Vetvicka, V., Yan, J., Hanikyrova, M., Mayadas, T. and Ross, G.D. (1999) The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J. Immunol. 162, 2281–2290.

    PubMed  CAS  Google Scholar 

  • Yan, J., Vetvicka, V., Xia, Y., Coxon, A., Carroll, M.C., Mayadas, T.N. and Ross, G.D. (1999) Beta-glucan, a "specific" biologic response modifier that uses antibodies to target tumors for cytotoxic recognition by leukocyte complement receptor type 3 (CD11b/CD18). J. Immunol. 163, 3045–3052.

    PubMed  CAS  Google Scholar 

  • Yokoyama, W.M. and Plougastel, B.F. (2003) Immune functions encoded by the natural killer gene complex. Nat. Rev. Immunol. 3, 304–316.

    Article  PubMed  CAS  Google Scholar 

  • Yoshitomi, H., Sakaguchi, N., Kobayashi, K., Brown, G.D., Tagami, T., Sakihama, T., Hirota, K., Tanaka, S., Nomura, T., Miki, I., et al. (2005) A role for fungal ß-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tsoni, S.V., Brown, G.D. (2007). Fungal ß-Glucans and their Receptors. In: Brown, G.D., Netea, M.G. (eds) Immunology of Fungal Infections. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5492-0_12

Download citation

Publish with us

Policies and ethics