Skip to main content

Chromatin-Associated Regulation Of Hiv-1 Transcription

Implications for the development of therapeutic strategies

  • Chapter
Chromatin and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 41))

Human Immunodeficiency Virus type 1 (HIV-1) infection can now be treated effectively in many patients in the developed world, using combinations of antiretroviral therapeutics, called Highly Active Anti-Retroviral Therapy (HAART). However, despite prolonged treatment with HAART, the persistence of latently HIV-1-infected cellular reservoirs harboring transcriptionally silent but replication-competent proviruses represents the major hurdle to virus eradication. These latently infected cells are a permanent source for virus reactivation and lead to a rebound of the viral load after interruption of HAART. Therefore, a greater understanding of the molecular mechanisms regulating proviral latency and reactivation should lead to rational strategies aimed at purging these cellular reservoirs of HIV-1. This review summarizes our current knowledge and understanding of the elements involved in HIV-1 transcriptional reactivation: (1) the site of integration; (2) the transcription factor NF-κB, which is induced by proinflammatory cytokines (such as TNFα) and binds to two κB sites in the HIV-1 promoter region; (3) the specific remodeling of a single nucleosome (called nuc-1 and located immediately downstream of the HIV-1 transcription start site under latency conditions) upon activation of the HIV-1 promoter; (4) post-translational acetylation of histones and of non-histone proteins (following treatment with deacetylases inhibitors, which induce viral transcription and nuc-1 remodeling); and (5) the viral trans-activator Tat, which promotes transcription by mediating the recruitment to the HIV-1 promoter of histone-modifying enzymes and ATP-dependent chromatin remodeling complexes required for nucleosome disruption and transcriptional processivity. Finally, this review highlights experimental therapies aimed at administrating HIV-1 gene expression activators (such as HDAC inhibitors) combined with an effective HAART in order to reactivate and decrease/eliminate the pool of latently HIV-1-infected cellular reservoirs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam E, Quivy V, Bex F, Chariot A, Collette Y, Vanhulle C, Schoonbroodt S, Goffin V, Nguyên TL-A, Carrard G, Friguet B, de Launoit Y, Burny A, Bours V, Piette J, Van Lint C (2003) Potentiation of TNFα -induced NF-kappaB activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearence of IκBalpha. Mol Cell Biol 23: 6200–6209

    PubMed  CAS  Google Scholar 

  • al Harthi L, Roebuck KA (1998) Human immunodeficiency virus type-1 transcription: role of the 5’- untranslated leader region. Int J Mol Med 1: 875–881

    PubMed  CAS  Google Scholar 

  • Aoyagi S, Hayes JJ (2002) hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol Cell Biol 22: 7484–7490

    PubMed  CAS  Google Scholar 

  • Barboric M, Peterlin BM (2005) A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 3: 200–203

    CAS  Google Scholar 

  • Bennasser Y, Le SY, Benkirane M, Jeang, KT (2005) Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity 22: 607–619

    PubMed  CAS  Google Scholar 

  • Biancotto A, Grivel JC, Gondois-Rey F, Bettendroffer L, Vigne R, Brown S, Margolis LB, Hirsch I (2004) Dual role of prostratin in inhibition of infection and reactivation of human immunodeficiency virus from latency in primary blood lymphocytes and lymphoid tissue. J Virol 78: 10507–10515

    PubMed  CAS  Google Scholar 

  • Billon N, Carlisi D, Datto MB, van Grunsven LA, Watt A, Wang XF, Rudkin BB (1999) Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 18: 2872–2882

    PubMed  CAS  Google Scholar 

  • Bisgrove D, Lewinski M, Bushman F, Verdin E (2005) Molecular mechanisms of HIV-1 proviral latency. Expert Rev Anti Infect Ther 3: 805–814

    PubMed  CAS  Google Scholar 

  • Blankson JN, Persaud D, Siliciano RF (2002) The challenge of viral reservoirs in HIV-1 infection. Annu Rev Med 53: 557–593

    PubMed  CAS  Google Scholar 

  • Bourgeois CF, Kim YK, Churcher MJ, West MJ, Karn J (2002) Spt5 cooperates with human immunodeficiency virus type 1 Tat by preventing premature RNA release at terminator sequences. Mol Cell Biol 22: 1079–1093

    PubMed  CAS  Google Scholar 

  • Brady J, Kashanchi F (2005) Tat gets the green’’ light on transcription initiation. Retrovirology 2

    Google Scholar 

  • Bres V, Tagami H, Peloponese JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE (2002) Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. EMBO J 21: 6811–6819

    PubMed  CAS  Google Scholar 

  • Bres V, Kiernan RE, Linares LK, Chable-Bessia C, Plechakova O, Treand C, Emiliani S, Peloponese JM, Jeang KT, Coux O, Scheffner M, Benkirane M (2003) A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat Cell Biol 5: 754–761

    PubMed  CAS  Google Scholar 

  • Bres V, Gomes N, Pickle L, Jones KA (2005) A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev 19: 1211–1226

    PubMed  CAS  Google Scholar 

  • Brigati C, Giacca M, Noonan DM, Albini A (2003) HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 220: 57–65

    PubMed  CAS  Google Scholar 

  • Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA, Richon VM (2002) The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA 99: 11700–11705

    PubMed  CAS  Google Scholar 

  • Byrd JC, Shinn C, Ravi R, Willis CR, Waselenko JK, Flinn IW, Dawson NA, Grever MR (1999) Depsipeptide (FR901228): a novel therapeutic agent with selective, in vitro activity against human B-cell chronic lymphocytic leukemia cells. Blood 94: 1401–1408

    PubMed  CAS  Google Scholar 

  • Chun TW, Stuyver L, Mizell SB, Ehler LA, Mican JA, Baseler M, Lloyd AL, Nowak MA, Fauci AS (1997a) Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proc Natl Acad Sci USA 94: 13193–13197

    CAS  Google Scholar 

  • Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, Taylor H, Hermankova M, Chadwick K, Margolick J, Quinn TC, Kuo YH, Brookmeyer R, Zeiger MA, Barditch-Crovo P, Siliciano RF (1997b) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188

    CAS  Google Scholar 

  • Chun TW, Engel D, Mizell SB, Ehler LA, Fauci AS (1998) Induction of HIV-1 replication in latently infected CD4+ T cells using a combination of cytokines. J Exp Med 188: 83–91

    PubMed  CAS  Google Scholar 

  • Col E, Caron C, Seigneurin-Berny D, Gracia J, Favier A, Khochbin S, (2001) The histone acetyltransferase, hGCN5, interacts with and acetylates the HIV transactivator, Tat. J Biol Chem 276: 28179–28184

    PubMed  CAS  Google Scholar 

  • Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ (1995) Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 43–49

    PubMed  CAS  Google Scholar 

  • Collman RG, Perno CF, Crowe SM, Stevenson M, Montaner LJ (2003) HIV and cells of macrophage/dendritic lineage and other non-T cell reservoirs: new answers yield new questions. J Leukoc Biol 74: 631–634

    PubMed  CAS  Google Scholar 

  • Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74: 6790–6799

    PubMed  CAS  Google Scholar 

  • Coull JJ, He G, Melander C, Rucker VC, Dervan PB, Margolis DM (2002) Targeted derepression of the human immunodeficiency virus type 1 long terminal repeat by pyrrole-imidazole polyamides. J Virol 76: 12349–12354

    PubMed  CAS  Google Scholar 

  • Craig JM (2005) Heterochromatin-many flavours, common themes. Bioessays 27: 17–28

    PubMed  CAS  Google Scholar 

  • Crazzolara R, Johrer K, Johnstone RW, Greil R, Kofler R, Meister B, Bernhard D (2002) Histone deacetylase inhibitors potently repress CXCR4 chemokine receptor expression and function in acute lymphoblastic leukaemia. Br J Haematol 119: 965–969

    PubMed  CAS  Google Scholar 

  • de la Serma I, OhkawaY, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473

    Google Scholar 

  • Demonté D, Quivy V, Colette Y, Van Lint C (2004) Administration of HDAC inhibitors to reactivate HIV-1 expression in latent cellular reservoirs: implications for the development of therapeutic strategies. Biochem Pharmacol 68: 1231–1238

    PubMed  Google Scholar 

  • Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277: 278–295

    PubMed  CAS  Google Scholar 

  • Doetzlhofer A, Rotheneder H, Lagger G, Koranda M, Kurtev V, Brosch G, Wintersberger E, Seiser C (1999) Histone deacetylase 1 can repress transcription by binding to Sp1. Mol Cell Biol 19: 5504–5511

    PubMed  CAS  Google Scholar 

  • Dorr A, Kiermer V, Pedal A, Rackwitz HR, Henklein P, Schubert U, Zhou MM, Verdin E, Ott M (2002) Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. EMBO J 21: 2715–2723

    PubMed  CAS  Google Scholar 

  • Dover GJ, Brusilow S, Charache S (1994) Induction of fetal hemoglobin production in subjects with sickle cell anemia by oral sodium phenylbutyrate. Blood 84: 339–343

    PubMed  CAS  Google Scholar 

  • El Kharroubi A, Martin MA (1996) cis-acting sequences located downstream of the human immunodeficiency virus type 1 promoter affect its chromatin structure and transcriptional activity. Mol Cell Biol 16: 2958–2966

    PubMed  CAS  Google Scholar 

  • El Kharroubi A, Piras G, Zensen R, Martin MA (1998) Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol Cell Biol 18: 2535–2544

    PubMed  CAS  Google Scholar 

  • Erselius JR, Jostes B, Hatzopoulos AK, Mosthaf L, Gruss P (1990) Cell-type-specific control elements of the lymphotropic papovavirus enhancer. J Virol 64: 1657–1666

    PubMed  CAS  Google Scholar 

  • Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421: 448–453

    PubMed  Google Scholar 

  • Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, Quinn TC, Chadwick K, Margolick J, Brookmeyer R, Gallant J, Markowitz M, Ho DD, Richman DD, Siliciano RF (1997) Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278: 1295–1300

    PubMed  CAS  Google Scholar 

  • Finzi D, Blankson J, Siliciano JD, Margolick JB, Chadwick K, Pierson T, Smith K, Lisziewicz J, Lori F, Flexner C, Quinn TC, Chaisson RE, Rosenberg E, Walker B, Gange S, Gallant J, Siliciano RF (1999) Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nat Med 5: 512–517

    PubMed  CAS  Google Scholar 

  • Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183

    PubMed  CAS  Google Scholar 

  • Fujinaga K, Irwin D, Huang Y, Taube R, Kurosu T, Peterlin BM (2004) Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24: 787–795

    PubMed  CAS  Google Scholar 

  • Goffin V, Demonte D, Vanhulle C, de Walque S, de Launoit Y, Burny A, Collette Y, Van Lint C (2005) Transcription factor binding sites in the pol gene intragenic regulatory region of HIV-1 are important for virus infectivity. Nucleic Acids Res 33: 4285–4310

    PubMed  CAS  Google Scholar 

  • Gordon S, Akopyan G, Garban H, Bonavida B (2006) Transcription factor YY1: structure, function and therapeutic implications in cancer biology. Oncogene 25: 1125–1142

    PubMed  CAS  Google Scholar 

  • Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78: 6122–6133

    PubMed  CAS  Google Scholar 

  • Hansen JC (2002) Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annu Rev Biophys Biomol Struct 31: 361–392

    PubMed  CAS  Google Scholar 

  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL (2002) Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111: 369–379

    PubMed  CAS  Google Scholar 

  • He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22: 2965–2973

    PubMed  CAS  Google Scholar 

  • Henderson AJ, Calame KL (1997) CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4+ T cells. Proc Natl Acad Sci USA 94: 8714–8719

    PubMed  Google Scholar 

  • Henderson A, Bunce M, Siddon N, Reeves R, Tremethick DJ (2000) High-mobility-group protein I can modulate binding of transcription factors to the U5 region of the human immunodeficiency virus type 1 proviral promoter. J Virol 74: 10523–10534

    PubMed  CAS  Google Scholar 

  • Henderson A, Holloway A, Reeves R, Tremethick DJ (2004) Recruitment of SWI/SNF to the human immunodeficiency virus type 1 promoter. Mol Cell Biol 24: 389–397

    PubMed  CAS  Google Scholar 

  • Hines R, Sorensen BR, Shea MA, Maury W (2004) PU.1 binding to ets motifs within the equine infectious anemia virus long terminal repeat (LTR) enhancer: regulation of LTR activity and virus replication in macrophages. J Virol 78: 3407–3418

    PubMed  CAS  Google Scholar 

  • Hsia SC, Shi YB (2002) Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor. Mol Cell Biol 22: 4043–4052

    PubMed  CAS  Google Scholar 

  • Hwang SS, Boyle TJ, Lyerly HK, Cullen BR (1991) Identification of the envelope V3 loop as the primary determinant of cell tropism in HIV-1. Science 253: 71–74

    PubMed  CAS  Google Scholar 

  • Imai K, Okamoto T (2006) Transcriptional repression of Human Immunodeficiency Virus Type 1 by AP-4. J Biol Chem 281: 12495–12505

    PubMed  CAS  Google Scholar 

  • Jennings HR, Romanelli F (1999) The use of valproic acid in HIV-positive patients. Ann Pharmacother 33: 1113–1116

    PubMed  CAS  Google Scholar 

  • Johannessen CU (2000) Mechanisms of action of valproate: a commentatory. Neurochem Int 37: 103–110

    PubMed  CAS  Google Scholar 

  • Jordan A, Defechereux P, Verdin E (2001) The site of HIV-1 integration in the human genome determines basal transcriptional activity and response to Tat transactivation. EMBO J 20: 1726–1738

    PubMed  CAS  Google Scholar 

  • Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22: 1868–1877

    PubMed  CAS  Google Scholar 

  • Kamine J, Chinnadurai G (1992) Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1. J Virol 66: 3932–3936

    PubMed  CAS  Google Scholar 

  • Kiefer HL, Hanley TM, Marcello JE, Karthik AG, Viglianti GA (2004) Retinoic acid inhibition of chromatin remodeling at the human immunodeficiency virus type 1 promoter. Uncoupling of histone acetylation and chromatin remodeling. J Biol Chem 279: 43604–43613

    PubMed  CAS  Google Scholar 

  • Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18: 6106–6118

    PubMed  CAS  Google Scholar 

  • Korin YD, Brooks DG, Brown S, Korotzer A, Zack JA (2002) Effects of prostratin on T-cell activation and human immunodeficiency virus latency. J Virol 76: 8118–8123

    PubMed  CAS  Google Scholar 

  • Kulkosky J, Culnan DM, Roman J, Dornadula G, Schnell M, Boyd MR, Pomerantz RJ (2001) Prostratin: activation of latent HIV-1 expression suggests a potential inductive adjuvant therapy for HAART. Blood 98: 3006–3015

    PubMed  CAS  Google Scholar 

  • Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10: 525–531

    PubMed  CAS  Google Scholar 

  • Lee ES, Sarma D, Zhou H, Henderson AJ (2002) CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology 299: 20–31

    PubMed  CAS  Google Scholar 

  • Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, Coffin JM, Bosch RJ, Margolis DM (2005) Depletion of latent HIV-1 infection in vivo: a proof of concept study. Lancet 366: 523–524

    Google Scholar 

  • Lewinski MK, Bisgrove D, Shinn P, Chen H, Hoffmann C, Hannenhalli S, Verdin E, Berry CC, Ecker JR, Bushman FD (2005) Genome-wide analysis of chromosomal features repressing human immunodeficiency virus transcription. J Virol 79: 6610–6619

    PubMed  CAS  Google Scholar 

  • Lusic M, Marcello A, Cereseto A, Giacca M (2003) Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. EMBO J 22: 6550–6561

    PubMed  CAS  Google Scholar 

  • Marcello A (2006) Latency: the hidden HIV-1 challenge. Retrovirology 3:7

    PubMed  Google Scholar 

  • Marecki S, McCarthy KM, Nikolajczyk BS (2004) PU.1 as a chromatin accessibility factor for immunoglobulin genes. Mol Immunol 40: 723–731

    CAS  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code ? Curr Opin Genet Dev 15: 163–176

    PubMed  CAS  Google Scholar 

  • Marks PA, Richon VM, Breslow R, Rifkind RA (2001) Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 13: 477–483

    PubMed  CAS  Google Scholar 

  • Martens JA, Winston F (2003) Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13: 136–142

    PubMed  CAS  Google Scholar 

  • McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15: 5647–5658

    PubMed  CAS  Google Scholar 

  • Mclean AR, Michie CA (1995) In vivo estimates of division and death rates of human T lymphocytes. Proc Natl Acad Sci USA 92: 3707–3711

    PubMed  CAS  Google Scholar 

  • Michie CA, McLean A, Alcock C, Beverley PC (1992) Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360: 264–265

    PubMed  CAS  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6: 38–51

    PubMed  CAS  Google Scholar 

  • Mujtaba S, He Y, Zeng L, Farooq A, Carlson JE, Ott M, Verdin E, Zhou MM (2002) Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain. Mol Cell 9: 575–586

    PubMed  CAS  Google Scholar 

  • Nahreini P, Mathews MB (1997) Transduction of the human immunodeficiency virus type 1 promoter into human chromosomal DNA by adeno-associated virus: effects on promoter activity. Virology 234: 42–50

    PubMed  CAS  Google Scholar 

  • Nakatani Y (2002) HIV-1 transcription: activation mediated by acetylation of Tat. Structure 10: 443–444

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Phelan ML, Kingston RE (2001) Generation and interconversion of multiple distinct nucleosomal states as a mechanism for catalyzing chromatin fluidity. Mol Cell 8: 1219–1230

    PubMed  CAS  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487

    PubMed  CAS  Google Scholar 

  • Navikas V, Link J, Persson C, Olsson T, Hojeberg B, Ljungdahl A, Link H, Wahren B (1995) Increased mRNA expression of IL-6, IL-10, TNF-alpha, and perforin in blood mononuclear cells in human HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol 9: 484–489

    PubMed  CAS  Google Scholar 

  • Nelsen B, Tian G, Erman B, Gregoire J, Maki R, Graves B, Sen R (1993) Regulation of lymphoid-specific immunoglobulin mu heavy chain gene enhancer by ETS-domain proteins. Science 261: 82–86

    PubMed  CAS  Google Scholar 

  • O’Brien WA, Koyanagi Y, Namazie A, Zhao JQ, Diagne A, Idler K, Zack JA, Chen IS (1990) HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348: 69–73

    PubMed  CAS  Google Scholar 

  • Ott M, Schnolzer M, Garnica J, Fischle W, Emiliani S, Rackwitz HR, Verdin E (1999) Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr Biol 9: 1489–1492

    PubMed  CAS  Google Scholar 

  • Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby, H., Jung, M., Verdin, E., and Ott, M. 2005. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS. Biol. 3: e41

    PubMed  Google Scholar 

  • Pereira LA, Bentley K, Peeters A, Churchill MJ, Deacon NJ (2000) A compilation of cellular transcription factor interactions with the HIV-1 LTR promoter. Nucleic Acids Res 28: 663–668

    PubMed  CAS  Google Scholar 

  • Persaud D, Zhou Y, Siliciano JM, Siliciano RF (2003) Latency in human immunodeficiency virus type 1 infection: no easy answers. J Virol 77: 1659–1665

    PubMed  CAS  Google Scholar 

  • Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187–192

    PubMed  CAS  Google Scholar 

  • Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14: R546–R551

    PubMed  CAS  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276: 36734–36741

    PubMed  CAS  Google Scholar 

  • Piekarz RL, Robey R, Sandor V, Bakke S, Wilson WH, Dahmoush L, Kingma DM, Turner ML, Altemus R, Bates SE (2001) Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98: 2865–2868

    PubMed  CAS  Google Scholar 

  • Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu Rev Immunol 18: 665–708

    PubMed  CAS  Google Scholar 

  • Ping YH, Rana, TM (2001) DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem 276: 12951–12958

    PubMed  CAS  Google Scholar 

  • Pongubala JM, Nagulapalli S, Klemsz MJ, McKercher SR, Maki RA, Atchison ML (1992) PU.1 recruits a second nuclear factor to a site important for immunoglobulin kappa 3’ enhancer activity. Mol Cell Biol 12: 368–378

    PubMed  CAS  Google Scholar 

  • Price DH (2000) P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol Cell Biol 20: 2629–2634

    PubMed  CAS  Google Scholar 

  • Quivy V, Adam E, Collette Y, Demonte D, Chariot A, Vanhulle C, Berkhout B, Castellano R, de Launoit Y, Burny A, Piette J, Bours V, Van Lint C (2002) Synergistic activation of HIV-1 promoter activity by NF-kappaB and inhibitors of deacetylases: potential perspectives for the development of therapeutic strategies. J Virol 76: 11091–11103

    PubMed  CAS  Google Scholar 

  • Quivy V, Van Lint C (2002) Diversity of acetylation targets and roles in transcriptional regulation: the human immunodeficiency virus type 1 promoter as a model system. Biochem Pharmacol 64: 925–934

    PubMed  CAS  Google Scholar 

  • Quivy V, Van Lint C (2004) Regulation at multiple levels of NF-kappaB-mediated transactivation by protein acetylation. Biochem Pharmacol 68: 1221–1229

    PubMed  CAS  Google Scholar 

  • Rabbi MF, Saifuddin M, Gu DS, Kagnoff MF, Roebuck KA (1997) U5 region of the human immunodeficiency virus type 1 long terminal repeat contains TRE-like cAMP-responsive elements that bind both AP-1 and CREB/ATF proteins. Virology 233: 235–245

    PubMed  CAS  Google Scholar 

  • Rabson AB, Lin HC (2000) NF-kappa B and HIV: linking viral and immune activation. Adv Pharmacol 48: 161–207

    PubMed  CAS  Google Scholar 

  • Raha T, Cheng SW, Green MR (2005) HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol 3:e44

    PubMed  Google Scholar 

  • Roebuck KA, Saifuddin M (1999) Regulation of HIV-1 transcription. Gene Expr 8: 67–84

    PubMed  CAS  Google Scholar 

  • Rohr O, Marban C, Aunis D, Schaeffer E (2003) Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J Leukoc Biol 74: 736–749

    PubMed  CAS  Google Scholar 

  • Romanelli F, Pomeroy C (2003) Concurrent use of antiretrovirals and anticonvulsants in human immunodeficiency virus (HIV) seropositive patients. Curr Pharm Des 9: 1433–1439

    PubMed  CAS  Google Scholar 

  • Romerio F, Gabriel MN, Margolis DM (1997) Repression of human immunodeficiency virus type 1 through the novel cooperation of human factors YY1 and LSF. J Virol 71: 9375–9382

    PubMed  CAS  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR (2002) Chromatin remodeling by RSC involves ATP-dependent DNA translocation. Genes Dev 16: 2120–2134

    PubMed  CAS  Google Scholar 

  • Schrager LK, D’Souza MP (1998) Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. JAMA 280: 67–71

    PubMed  CAS  Google Scholar 

  • Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, Bushman F (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110: 521–529

    PubMed  CAS  Google Scholar 

  • Scott EW, Simon MC, Anastasi J, Singh H (1994) Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265: 1573–1577

    PubMed  CAS  Google Scholar 

  • Scripture-Adams DD, Brooks DG, Korin YD, Zack JA (2002) Interleukin-7 induces expression of latent human immunodeficiency virus type 1 with minimal effects on T-cell phenotype. J Virol 76: 13077–13082

    PubMed  CAS  Google Scholar 

  • Sgarbanti M, Borsetti A, Moscufo N, Bellocchi MC, Ridolfi B, Nappi F, Marsili G, Marziali G, Coccia EM, Ensoli B, Battistini A (2002) Modulation of human immunodeficiency virus 1 replication by interferon regulatory factors. J Exp Med 195: 1359–1370

    PubMed  CAS  Google Scholar 

  • Sheridan PL, Mayall TP, Verdin E, Jones KA (1997) Histone acetyltransferases regulate HIV-1 enhancer activity in vitro. Genes Dev 11: 3327–3340

    PubMed  CAS  Google Scholar 

  • Shioda T, Levy JA, Cheng-Mayer C (1991) Macrophage and T cell-line tropisms of HIV-1 are determined by specific regions of the envelope gp120 gene. Nature 349: 167–169

    PubMed  CAS  Google Scholar 

  • Siliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF (2003) Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9: 727–728

    PubMed  CAS  Google Scholar 

  • Sims RJ, Belotserkovskaya R, Reinberg D (2004) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18: 2437–2468

    PubMed  CAS  Google Scholar 

  • Skov S, Rieneck K, Bovin LF, Skak K, Tomra S, Michelsen BK, Odum N (2003) Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101: 1430–1438

    PubMed  CAS  Google Scholar 

  • Smithgall MD, Wong JG, Critchett KE, Haffar OK (1996) IL-7 up-regulates HIV-1 replication in naturally infected peripheral blood mononuclear cells. J Immunol 156: 2324–2330

    PubMed  CAS  Google Scholar 

  • Sowa Y, Orita T, Minamikawa S, Nakano K, Mizuno T, Nomura H, Sakai T (1997) Histone deacetylase inhibitor activates the WAF1/Cip1 gene promoter through the Sp1 sites. Biochem Biophys Res Commun 241: 142–150

    PubMed  CAS  Google Scholar 

  • Steger DJ, Eberharter A, John S, Grant PA, Workman JL (1998) Purified histone acetyltransferase complexes stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc Natl Acad Sci USA 95: 12924–12929

    PubMed  CAS  Google Scholar 

  • Sune C, Garcia-Blanco MA (1995) Sp1 transcription factor is required for in vitro basal and Tat-activated transcription from the human immunodeficiency virus type 1 long terminal repeat. J Virol 69: 6572–6576

    PubMed  CAS  Google Scholar 

  • Suzuki T, Kimura A, Nagai R, Horikoshi M (2000) Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells 5: 29–41

    PubMed  CAS  Google Scholar 

  • Thierry S, Marechal V, Rosenzwajg M, Sabbah M, Redeuilh G, Nicolas JC, Gozlan J (2004) Cell cycle arrest in G2 induces human immunodeficiency virus type 1 transcriptional activation through histone acetylation and recruitment of CBP, NF-kappaB, and c-Jun to the long terminal repeat promoter. J Virol 78: 12198–12206

    PubMed  CAS  Google Scholar 

  • Tréand C, du Chêne I, Bres V, Kiernan R, Benarous R, Benkirane M, Emiliani S (2006) Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J 25: 1690–1699

    PubMed  Google Scholar 

  • Tunnicliff G (1999) Actions of sodium valproate on the central nervous system. J Physiol Pharmacol 50: 347–365

    PubMed  CAS  Google Scholar 

  • Van Lint C, Ghysdael J, Paras P Jr, Burny A, Verdin E (1994) A transcriptional regulatory element is associated with a nuclease-hypersensitive site in the pol gene of human immunodeficiency virus type 1. J Virol 68: 2632–2648

    PubMed  Google Scholar 

  • Van Lint C, Emiliani S, Ott M, Verdin E (1996a) Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J 15: 1112–1120

    Google Scholar 

  • Van Lint C, Emiliani S, Verdin E (1996b) The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 5: 245–53

    Google Scholar 

  • Van Lint C, Amella CA, Emiliani S, John M, Jie T, Verdin E (1997) Transcription factor binding sites downstream of the human immunodeficiency virus type 1 transcription start site are important for virus infectivity. J Virol 71: 6113–6127

    PubMed  Google Scholar 

  • Van Lint C, (2000) Role of chromatin in HIV-1 transcriptional regulation. Adv Pharmacol 48: 121–160

    Article  PubMed  Google Scholar 

  • Verdin E (1991) DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J Virol 65: 6790–6799

    PubMed  CAS  Google Scholar 

  • Verdin E, Paras P Jr, Van Lint C (1993) Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J 12: 3249–3259

    PubMed  CAS  Google Scholar 

  • West MJ, Lowe AD, Karn J (2001) Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J Virol 75: 8524–8537

    PubMed  CAS  Google Scholar 

  • Williams SA, Greene WC (2005) Host factors regulating post-integration latency of HIV. Trends Microbiol 13: 137–139

    PubMed  CAS  Google Scholar 

  • Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25: 139–149

    PubMed  CAS  Google Scholar 

  • Wolffe A (1999) Chromatin: Structure and Function. Academic Press, San Diego, CA

    Google Scholar 

  • Wolffe AP (2001) Transcriptional regulation in the context of chromatin structure. Essays Biochem 37: 45–57

    PubMed  CAS  Google Scholar 

  • Wong MC, Suite ND, Labar DR (1990) Seizures in human immunodeficiency virus infection. Arch Neurol 47: 640–642

    PubMed  CAS  Google Scholar 

  • Wong JK, Hezareh M, Gunthard HF, Havlir DV, Ignacio CC, Spina CA, Richman DD (1997) Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278: 1291–1295

    PubMed  CAS  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67: 545–579

    PubMed  CAS  Google Scholar 

  • Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300: 1749–1751

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97: 41–51

    PubMed  CAS  Google Scholar 

  • Yedavalli VS, Benkirane M, Jeang KT (2003) Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J Biol Chem 278: 6404–6410

    PubMed  CAS  Google Scholar 

  • Ylisastigui L, Archin NM, Lehrman G, Bosch RJ, Margolis DM (2004) Coaxing HIV-1 from resting CD4 T cells: histone deacetylase inhibition allows latent viral expression. AIDS 18: 1101–1108

    PubMed  CAS  Google Scholar 

  • Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discovery 5: 37–50

    CAS  Google Scholar 

  • Xiao H, Hasegawa T, Isobe K (2000) p300 collaborates with Sp1 and Sp3 in p21(waf1/cip1) promoter activation induced by histone deacetylase inhibitor. J Biol Chem 275: 1371–1376

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Quivy, V., Walque, S.D., Lint, C.V. (2007). Chromatin-Associated Regulation Of Hiv-1 Transcription. In: Kundu, T.K., et al. Chromatin and Disease. Subcellular Biochemistry, vol 41. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5466-1_17

Download citation

Publish with us

Policies and ethics