Skip to main content

Use of Lipases in Organic Synthesis

  • Chapter
Industrial Enzymes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfonso, I., Astorga, C., Rebolledo, F. and Gotor, V. (1996). Sequential biocatalytic resolution of (±)-trans-cyclohexane-1,2-diamine. Chemoenzymic synthesis of an optically active polyamine. Chem. Commun. 2471–2472.

    Google Scholar 

  • Alfonso, I. and Gotor, V. (2004). Biocatalytic and biomimetic aminolysis reactions: useful tools for selective transformations on polifunctional substrates. Chem. Soc. Rev. 33, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Badjić, J.D., Kadnikova E.N. and Kostić, N.M. (2001). Enantioselective aminolysis of an α-chloroester catalyzed by Candida cylindracea lipase encapsuled in sol-gel silica glass. Org. Lett. 3, 2025–2027.

    Article  PubMed  CAS  Google Scholar 

  • Breen, G.F. (2004). Enzymatic resolution of a secondary amine using novel acylating reagents. Tetrahedron: Asymmetry 15, 1427–1430.

    Article  CAS  Google Scholar 

  • Bornscheuer, U.T. and Kazlauskas R.J. (2004). Catalytic promiscuity in biocatalysis: Using old enzymes to form new bonds and follow new pathways. Angew. Chem. Int. Ed. 43, 6032–6040.

    Article  CAS  Google Scholar 

  • Bouzemi, N., Debbeche, H., Aribi-Zouiou, L. and Fiaud, J-C. (2004). On the use of succinic anhydride as acylating agent for practical resolution of aryl-alkyl alcohols through lipase-catalysed acylation. Tetrahedron Lett. 45, 627–630.

    Article  CAS  Google Scholar 

  • Branneby, C., Carlqvist, P., Magnusson, A., Hult, K., Brinck, T. and Berglund, P. (2003). Carbon-Carbon bonds by hydrolytic enzymes. J. Am. Chem. Soc. 125, 874–875.

    Article  PubMed  CAS  Google Scholar 

  • Branneby, C., Carlqvist, P., Hult, K., Brinck, T. and Berglund, P. (2004). Aldol additions with mutant lipase: analysis by experiments and theoretical calculations. J. Mol. Catal. B: Enz. 31, 123–128.

    Article  CAS  Google Scholar 

  • Carlqvist, P., Svedendahl M., Branneby, C., Hult, K., Brinck, T. and Berglund, P. (2004). Exploring the active-site of a rationally redesigned lipase for catalysis of Michael-type additions. ChemBioChem 6, 331–336.

    Article  CAS  Google Scholar 

  • Choi, Y.K., Kim, M.J., Ahn, Y. and Kim M-J. (2001). Lipase/palladium-catalyzed asymmetric transformations of ketoximes to optically active amines. Org. Lett. 3, 4099–4101.

    Article  PubMed  CAS  Google Scholar 

  • De Gonzalo, G., Brieva, R., Sànchez, V., Bayod, M. and Gotor, V. (2003). Anhydrides as acylating agents in the enzymatic resolution of an intermediate of (-)-paroxetine. J. Org. Chem. 68, 3333–3336.

    Article  PubMed  CAS  Google Scholar 

  • Faber, K. Biotransformations in Organic Chemistry. Springer-Verlag: Heidelberg, 2004

    Google Scholar 

  • Fernàndez-Solares, L., Dìaz, M., Brieva, R., Sànchez, V.M., Bayod, M. and Gotor, V. (2002). Enzymatic resolution of new carbonate intermediates for the synthesis of (S)-(±)-zopiclone. Tetrahedron: Asymmetry 13, 2577–2582.

    Article  Google Scholar 

  • Ferrero, M. and Gotor, V. (2000). Biocatalytic selective modifications of conventional nucleosides, carbocyclic nucleosides and C-nucleosides. Chem. Rev. 100, 4319–4347.

    Article  PubMed  CAS  Google Scholar 

  • Garcìa-Urdiales, E., Alfonso, I. and Gotor, V. (2005). Enantioselective desymmetrization in organic synthesis. Chem. Rev. 105, 313–354.

    Article  PubMed  CAS  Google Scholar 

  • Ghanem A. and Aboul-Enein H.Y. (2004). Lipase mediated chiral resolution of racemates in organic solvents. Tetrahedron: Asymmetry 15, 3331–3351.

    Article  CAS  Google Scholar 

  • Gonzàlez-Sabìn, J., Gotor, V. and Rebolledo, F. (2002). CAL-B-catalyzed resolution of some pharmacologically interesting β-substituted isopropylamines. Tetrahedron: Asymmetry 13, 1315–1320.

    Article  Google Scholar 

  • Gonzàlez-Sabin, J., Gotor, V. and F. Rebolledo, F. (2004). Chemoenzymatic preparation of optically active β-aminocyclohexanols and their application in the enantioselecetive addition of diethylzinc to benzaldehyde. Tetrahedron: Asymmetry 15, 1335–1341.

    Article  CAS  Google Scholar 

  • Gotor, V. (1999). Non-Conventional Hydrolase Chemistry: Amide and Carbamate Bond Formation Catalyzed by Lipases. Bioorg. Med. Chem. 7, 2189–2197.

    Article  PubMed  CAS  Google Scholar 

  • Gotor, V. (2002). Biocatalysis applied to the preparation of pharmaceuticals. Org. Proc. Res. Dev. 6, 420–426.

    Article  CAS  Google Scholar 

  • Homann, M.J., Vail, R., Morgan, B., Sabesan, V., Levy, C., Dodds, D.R. and Zaks, A. (2001). Enzymatic Hydrolysis of a Prochiral 3-Substituted Glutarate Ester, an Intermediate in the Synthesis of an NK1/NK2 Dual Antagonist Adv. Synth. Catal. 343, 744–749.

    Article  CAS  Google Scholar 

  • Irimescu, R. and Kato, K. (2004). Lipase-catalyzed enantioselective reaction of amines with carboxylic acids under reduced pressure in non-solvent system and in ionic liquids. Tetrahedron Lett. 45, 523–525.

    Article  CAS  Google Scholar 

  • Jain, N., Kumar, A., Chauhan, S. and Chauhan, S.M.S. (2005). Chemical and biochemical transformations in ionic liquids. Tetrahedron 61, 1015–1060.

    Article  CAS  Google Scholar 

  • Kamal, A., Khanna, G.B.R. and Ramu, R. (2002). Chemoenzymatic synthesis of both enantiomers of fluoxetine, tomoxetine and nisoxetine: lipase catalysed resolution of 3-aryl-3-hydroxypropanenitriles. Tetrahedron: Asymmetry 13, 2039–2051.

    Article  CAS  Google Scholar 

  • Kazlauskas, R.J., Weissfloch, A.N.E Rappaport A.T. and Cuccia, L.A. (1991). A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56, 2656–2665.

    Article  CAS  Google Scholar 

  • Kazlauskas, R.J. (2005). Enhancing catalytic promiscuity for biocatalysis. Curr. Opin. Chem. Biol. 9, 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Kielbasinski, P., Zurawinski, R., Albrycht, M. and Mikolajczyk, M. (2003). The first enzymatic desymmetrizations of prochiral phosphine oxides. Tetrahedron: Asymmetry 14, 3379–3384.

    Article  CAS  Google Scholar 

  • Kirihara, M., Kawasaki, M., Takuwa, T., Kakuda, H., Wakikawa, T., Takeuchi, Y. and Kirk, K.L. (2003). Efficient synthesis of (R)- and (S)-1-amino-2,2-difluorocyclopropanecarboxylic acid via lipase-catalyzed desymmetrization of prochiral precursors. Tetrahedron: Asymmetry 14, 1753–1761.

    Article  CAS  Google Scholar 

  • Klibanov, A.M. (2001) Improving enzymes by using them in organic solvents. Nature 409, 241–246.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Krishna, S.H., Persson, M., Bornscheuer, U.T. (2002). Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron: Asymmetry 13, 2693–2696.

    Article  Google Scholar 

  • Liljeblad, A., Lindborg, J., Kanerva, A., Katajisto, J. and Kanerva, L.T. (2002). Enantioselective lipase-catalyzed reactions of methyl pipecolinate: transesterification and N-acylation. Tetrahedron Lett. 43, 2471–2474.

    Article  CAS  Google Scholar 

  • Liu, H.-L., Helge, B. and Anthonsen, T. Chemoenzymatic synthesis of the non-tricyclic antidepressants Fluoxetine, Tomoxetine and Nisoxetine. (2000). J. Chem. Soc. Perkin Trans. 1, 1767–1769.

    Article  Google Scholar 

  • Lòpez-Garcìa, M., Alfonso, I., Gotor, V. (2003a). Desymmetrization of dimethyl 3-substituted glutarates through enzymatic ammonolysis and aminolysis reactions. Tetrahedron: Asymmetry 14, 603–609.

    Article  CAS  Google Scholar 

  • Lòpez-Garcìa, M., Alfonso, I. and Gotor, V. (2003b). Synthesis of (R)-3,4-diaminobutanoic acid by desymmetrization of dimethyl 3-(benzylamino)glutarate through enzymatic ammonolysis. J. Org. Chem. 68, 648–651.

    Article  CAS  Google Scholar 

  • Luna, A., Maestro, A., Astorga, C. and Gotor, V. (1999). Enzymatic resolution of (±)-cis and (±)-trans-1-aminoindan-2-ol and (±)-cis and (±)-trans-2-aminoindan-1-ol Tetrahedron: Asymmetry 10, 1969–1977.

    Article  CAS  Google Scholar 

  • Luna, A., I. Alfonso, I. and Gotor, V. (2002). Biocatalytic approaches toward the synthesis of both enantiomers of trans-cyclopentane-1,2-diamine. Org. Lett. 4, 3627–3629.

    Article  PubMed  CAS  Google Scholar 

  • Madeira Lau, R., Rantwijk, F.V., Seddon, K.R. and Sheldon R.A. (2000). Lipase-catalyzed reaction in ionic liquids. Org. Lett. 2, 4189–4191.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, B., Zaks, A., Dodds, D.R., Liu, J., Jain, R.,Megati, S., Njoroge F.J. and Girijavallabhan, V.M. (2000). Enzymatic kinetic resolution of piperidine atropoisomers: synthesis of a key intermediate of the farnesyl protein transferase inhibitor. J. Org. Chem. 65, 5451–5459.

    Article  PubMed  CAS  Google Scholar 

  • Neri, C. and Williams, J.M.J. (2003). New Routes to Chiral Evans Auxiliaries by Enzymatic Desymmetrisation and Resolution Strategies. Adv. Synth. Catal. 345, 835–848.

    Article  CAS  Google Scholar 

  • Pàmies, O. and Bäckvall, J.-E. (2001). Dynamic kinetic resolution of β-azido alcohols. An efficient route to chiral aziridines and β-aminoalcohols. J. Org. Chem. 66, 4022–4025.

    Article  PubMed  CAS  Google Scholar 

  • Pàmies, O. and Bäckvall, J-E. (2003). Combination of enzymes and metal catalysis. A powerful approach in asymmetric catalysis. Chem. Rev. 103, 3247–3262.

    Article  PubMed  CAS  Google Scholar 

  • Puertas, S., Rebolledo, F., Gotor, V. (1996). Enantioselective enzymic aminolysis and ammonolysis of dimethyl 3-hydroxyglutarate. Synthesis of (R)-4-amino-3-hydroxybutanoic acid. J. Org. Chem. 61, 6024–6027.

    Article  CAS  Google Scholar 

  • Reetz, M.T. and Schimossek, K. (1996). Lipase-catalyzed dynamic kinetic resolution of chiral amines: Use of palladium as the racemization catalyst. Chimia 50, 668–669.

    CAS  Google Scholar 

  • Sanfilippo, C., Nicolosi, G., Fabbri, D. and Dettori, M.A. (2003). Access to optically active 2,2‵-dihydroxy-6,6‵-dimethoxy-1,1‵-biphenyl by a simple biocatalytic procedure. Tetrahedron: Asymmetry 14, 3267–3270.

    Article  CAS  Google Scholar 

  • Takayama, S., Lee, S.T., Hung, S-H., Wong, C-H. (1999). Designing enzymic resolution of amines. Chem. Commun. 127–128.

    Google Scholar 

  • Torre, O., Alfonso, I. and Gotor, V. (2004). Lipase catalysed Michael addition of secondary amines to acrylonitrile. Chem. Commun. 1724–1725.

    Google Scholar 

  • van Rantwijk, F. and Sheldon, R.A. (2004). Enantioselective acylation of chiral amines catalysed by serine hydrolases. Tetrahedron 60, 501–519.

    Article  CAS  Google Scholar 

  • Xu, J-M., Yao, S-P., Wu, W-B., Lv, D-S and Lin X-F. (2005). Two-step sequential synthesis of pyrimidine derivatives containing a sugar branch via combining of enzymatic Michael addition/acylation. J. Mol. Catal. B: Enz. 35, 122–127.

    Article  CAS  Google Scholar 

  • Wiktelius, D. (2005). Lipases - Enzymes for biocatalytic asymmetric synthesis. Synlett 2111–2114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Gotor-Fernández, V., Vicente, G. (2007). Use of Lipases in Organic Synthesis. In: Polaina, J., MacCabe, A.P. (eds) Industrial Enzymes. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5377-0_18

Download citation

Publish with us

Policies and ethics