Skip to main content

Multimedia IP Development

Image and video codecs

  • Chapter
Essential Issues in SOC Design

Abstract

Multimedia intellectual property (IP) cores play a critical role in a successful multimedia SOC design. This chapter will focus on the design of image and video codec IPs, which usually requires lots of computational power. From theory to practice and from algorithm to hardware architecture, design methodologies toward an optimized architecture and also real design cases will be presented. Both top-down system analysis and bottom-up core module design are emphasized. Following theoretical discussions of the overall scenario, key building blocks of image and video codecs proposed in literature are reviewed. Examples will cover motion estimation, discrete cosine transform, discrete wavelet transform, and entropy coder. Then, complete image and video codec designs are explored. JPEG, JPEG 2000, and H.264/AVC are the three case studies. This chapter is intended to provide an overview, from theory to practice, on how to design efficient multimedia IPs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ISO/IEC, Int. Standard DIS 10918, “Digital compression and coding of continuous-tone still images.”

    Google Scholar 

  2. ISO/IEC 15444-1:2000, “Information technology – JPEG 2000 image coding system – Part 1: Core coding system.”

    Google Scholar 

  3. ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC, Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification, 2003.

    Google Scholar 

  4. W. Kou, Digital image compression algorithms and standards, Norwell, MA: Kluwer Academic Publishers, 1995.

    Google Scholar 

  5. V. Bhaskaran and K. Konstantinides. Image and Video Compression Standards: Algorithms and Architectures. Norwell, MA: Kluwer Academic Publishers, 1997.

    Google Scholar 

  6. Y. Q. Shi, H. Sun, Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and Standards, CRC Press, 1999.

    Google Scholar 

  7. K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications. New York: Academic, 1990.

    MATH  Google Scholar 

  8. W. P. Pennebaker and J. L. Mitchell, JPEG Still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1992.

    Google Scholar 

  9. D. S. Taubman and M. W. Marcellin, JPEG2000 image compression fundamentals, standards and practice. Norwell, MA: Kluwer Academic Publishers, 2002.

    Google Scholar 

  10. P. Kuhn, “Acomplexity analysis tool: iprof (ver 0.41),” ISO/IEC JTC/SC29/WG11, Dublin (Ireland), Doc. M3551, July 1998.

    Google Scholar 

  11. Iain E.G. Richardson, Video codec design: developing image and video compression systems, Chichester: Wiley, 2002.

    Google Scholar 

  12. F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele, and A. Vandecappele, Custom memory management methodology: exploration of memory organization for embedded multimedia system design, Norwell, MA: Kluwer Academic Publishers, 1998.

    Google Scholar 

  13. Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Survey on Block Matching Motion Estimation Algorithms and Architectures with New Results” to Appear, IEEE Journal of VLSI Signal Processing.

    Google Scholar 

  14. Digital Video Coding Group, ITU-T recommendation H.263 software implementation, Telenor R&D, 1995.

    Google Scholar 

  15. W. Li and E. Salari, “Successive elimination algorithm for motion estimation,” IEEE Trans. Image Processing, vol. 4, no. 1, pp. 105-107, Jan. 1995.

    Article  Google Scholar 

  16. M. Bierling, “Displacement estimation by hierarchical block matching,” Proc. of SPIE Visual Commun. Image Processing (VCIP’88), 1988, pp. 942-951.

    Google Scholar 

  17. B. Liu and A. Zaccarin, “New fast algorithms for the estimation of block motion vectors,” IEEE Trans. Circuits Syst. Video Technol., vol. 3, no. 2, pp. 148-157, Apr. 1993.

    Article  Google Scholar 

  18. Z. L. He, C. Y. Tsui, K. K. Chan, and M. L. Liou, “Low-power VLSI design for motion estimation using adaptive pixel truncation,” IEEE Trans. Circuits Syst. Video Technol., vol. 10, no. 5, pp. 669-678, Aug. 2000.

    Article  Google Scholar 

  19. J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted center-biased diamond search algorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 8, no. 4, pp. 369-377, Aug. 1998.

    Article  Google Scholar 

  20. S. Zhu and K. K. Ma, “A new diamond search algorithm for fast blockmatching motion estimation,” IEEE Trans. Image Processing, vol. 9, no. 2, pp. 287-290, Feb. 2000.

    Article  Google Scholar 

  21. A. M. Tourapis, O. C. Au, M. L. Liou, G. Shen, and I. Ahmad, “Optimizing the mpeg-4 encoder – advanced diamond zonal search,” Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’00), 2000, pp. 674-677.

    Google Scholar 

  22. A. M. Tourapis, O. C. Au, and M. L. Liu, “Highly efficient predictive zonal algorithms for fast block-matching motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 10, pp. 934-947, Oct. 2002.

    Article  Google Scholar 

  23. T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated inter frame coding for video conferencing,” Proc. Nat. Telecom-mun. Conf., 1981, pp. C9.6.1-C9.6.5.

    Google Scholar 

  24. J. Jain and A. Jain, “Displacement measurement and its application in internal image coding,” IEEE Trans. Commun., vol. COM-29, no. 12, pp. 1799-1808, Dec. 1981.

    Article  Google Scholar 

  25. M. J. Chen, L. G. Chen, and T. D. Chiueh, “One-dimensional full search motion estimation algorithm for video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 5, pp. 504-509, June 1994.

    Article  Google Scholar 

  26. R. Li, B. Zeng, and M. L. Liou, “A new three-step search algorithm for block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 4, no. 4, pp. 438-442, Aug. 1994.

    Article  Google Scholar 

  27. L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, pp. 313-317, June 1996.

    Article  Google Scholar 

  28. L. K. Liu and E. Feig, “A block-based gradient descent search algorithm for block motion estimation in video coding,” IEEE Trans. Circuits Syst.Video Technol., vol. 6, no. 4, pp. 419-422, Aug. 1996.

    Article  Google Scholar 

  29. Y.W. Huang, S. Y. Ma, C. F. Shen, and L. G. Chen, “Predictive line search: an efficient motion estimation algorithm for mpeg-4 encoding systems on multimedia processors,” IEEE Trans. Circuits and Syst. Video Technol., vol. 13, no. 1, pp. 111-117, Jan. 2003.

    Article  Google Scholar 

  30. D. Tzovaras, M. G. Strintzis, and H. Sahinolou, “Evaluation of multiresolution block matching techniques for motion and disparity estimation,” Signal Processing: Image Commun., vol. 6, pp. 56-67, 1994.

    Article  Google Scholar 

  31. J. H. Lee, K. W. Lim, B. C. Song, and J. B. Ra, “A fast multi-resolution block matching algorithm and its VLSI architecture for low bit-rate video coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 12, pp. 1289-1301, Dec. 2001.

    Article  Google Scholar 

  32. K. M. Yang, M. T. Sun, and L. Wu, “A family of VLSI designs for the motion compensation block-matching algorithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 1317-1325, Oct. 1989.

    Google Scholar 

  33. T. Komarek and P. Pirsch, “Array architectures for block matching algorithms,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 1301-1308, Oct. 1989.

    Google Scholar 

  34. Y. S. Jehng, L. G. Chen, and T. D. Chiueh, “An efficient and simple VLSI tree architecture for motion estimation algorithms,” IEEE Trans. Signal Processing, vol. 41, no. 2, pp. 889-900, Feb. 1993.

    Article  Google Scholar 

  35. W.-M. Chao, C.-W. Hsu, Y.-C. Chang, and L.-G. Chen, “A novel motion estimator supporting diamond search and fast full search,” Proc. of IEEE Int. Symp. Circuits Syst. (ISCAS’02), 2002, pp. 492-495.

    Google Scholar 

  36. M.-Y. Hsu, “Scalable module-based architecture for MPEG-4 BMA motion estimation,” M.S. thesis, National Taiwan Univ., June 2000.

    Google Scholar 

  37. J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture,” IEEE Trans. CSVT, vol. 12, no. 1, pp. 61-72, Jan. 2002.

    Google Scholar 

  38. C.-T. Huang, C.-Y. Chen, Y.-H. Chen, and L.-G. Chen, “Memory analysis of VLSI architecture for 5/3 and 1/3 motion-compensated temporal filtering,” Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.

    Google Scholar 

  39. A. Madisetti and A. N. Willson, “A 100 MHz 2-D 8$× $8 DCT/IDCT processor for HDTV applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 5, no. 2, pp. 158-165, Apr. 1995.

    Article  Google Scholar 

  40. W. Chen et al., “A fast computational algorithm for the discrete cosine transform,” IEEE Trans. Commun., vol. COM-25, pp. 1004-1009, Sept. 1977.

    Article  Google Scholar 

  41. G. S. Taylor and G. M. Blair, “Design for the discrete cosine transform in VLSI,” IEE Proc. Comput. Digit. Tech., vol. 145, no. 2, pp. 127-133, Mar. 1998.

    Article  Google Scholar 

  42. M. Kovac and N. Ranganathan, “JAGUAR: a full pipelined VLSI architecture for JPEG image compression standard,” Proc.of the IEEE, vol. 83, no. 2, pp.247-258, Feb. 1995.

    Article  Google Scholar 

  43. C.-T. Huang, P.-C.Tseng, L.-G. Chen, “Analysis and VLSI architecture for 1-D and 2-D discrete wavelet transform,” IEEE Trans. Signal Processing, vol. 53, no. 4, pp. 1575-1586, Apr. 2005.

    Article  MathSciNet  Google Scholar 

  44. C.-J. Lian, H.-C. Chang, K.-F. Chen, and L.-G. Chen, “A JPEG decoder IP Core supporting user-defined Huffman table decoding,” Proc. of the 9th International Symposium on Integrated Circuits, Devices and Systems (ISIC-2001), Singapore, pp. 497-500, Sep. 2001.

    Google Scholar 

  45. S.-M. Lei and M.-T. Sun, “An entropy coding system for digital HDTV applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 1, no. 1, pp. 147-155, Mar. 1991.

    Article  Google Scholar 

  46. C.-J. Lian, L.-G. Chen, H.-C. Chang, and Y.-C. Chang, “Design and implementation of JPEG encoder IP core,” Proc. of Asia and South Pacific Design Automation Conf. (ASP-DAC 2001), Yokohama, Japan, pp. 29-30, Jan 2001.

    Google Scholar 

  47. H.-C. Fang, et al., “81MS/s JPEG2000 single-chip encoder with rate-distortion optimization,” Digest of Technical Papers, 2004 IEEE International Solid-State Circuits Conference (ISSCC 2004), pp. 328-531 Vol.1

    Google Scholar 

  48. C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G.Chen, “Analysis and architecture design of block-coding engine for EBCOT in JPEG 2000,” IEEE Trans. Circuits and Syst. For Video Technol., vol. 13, no. 3, pp. 219-230, Mar. 2003.

    Article  Google Scholar 

  49. H. Yamauchi, S. Okada, K. Taketa, T. Ohyama, Y. Matsuda, T. Mori, S. Okada, T. Watanabe, Y. Matsuo, Y. Yamada, T. Ichikawa, Y. Matsushita, “Image processor capable of block-noise-free JPEG2000 compression with 30 frames/s for digital camera applications,” Digest of Technical Papers, 2003 IEEE International Solid-State Circuits Conference (ISSCC 2003), pp. 476-477 vol.1.

    Google Scholar 

  50. K. Andra, C. Chakrabarti, T. Acharya, “A high-performance JPEG2000 architecture,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 13, no. 3, pp. 209-218, Mar. 2003.

    Article  Google Scholar 

  51. B.-F. Wu, C.-F. Lin, “An efficient architecture for JPEG2000 coprocessor,” IEEE Trans. on Consumer Electronics, vol. 50, no. 4, pp. 1183-1189, Nov. 2004.

    Google Scholar 

  52. H. Yamauchi, S. Okada, K. Taketa, Y. Matsuda, T. Mori, T. Watanabe, Y. Matsuo, Y. Matsushita, “1440 $× $ 1080 pixel, 30 frames per second motion-JPEG 2000 codec for HD-movie transmission,” IEEE Journal of Solid-State Circuits, vol. 40, no. 1, pp. 331-341, Jan. 2005.

    Article  Google Scholar 

  53. T. Wiegand, G. J. Sullivan, G. Bjntegaard, A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, Jul. 2003.

    Article  Google Scholar 

  54. J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE Magazine on Circuits and Systems, vol. 4, no. 1, pp. 7-28, first quarter, 2004.

    Article  Google Scholar 

  55. A. Puri, X. Chen, and A. Luthra, “Video coding using the H.264/MPEG-4 AVC compression standard,” Trans. on Signal Processing: Image Communication, vol. 19, no. 9, pp. 793-849, Oct. 2004.

    Article  Google Scholar 

  56. A. Joch, F. Kossentini, H. Schwarz, T. Wiegand, and G. J. Sullivan, “Performance comparison of video coding standards using Lagragian coder control,” Proc. of 2002 International Conference on Image Processing (ICIP 2002), 2002, pp. 501-504.

    Google Scholar 

  57. Y.-W. Huang, T.-C. Chen, C.-H. Tsai, C.-Y. Chen, T.-W. Chen, C.-S. Chen, C.-F. Shen, S.-Y. Ma, T.-C. Wang, B.-Y. Hsieh, H.-C. Fang, L.-G. Chen, “A 1.3TOPS H.264/AVC single-chip encoder for HDTV applications,” Digest of Technical Papers, 2005 IEEE International Solid-State Circuits Conference (ISSCC 2005), 2005, pp. 128-130

    Google Scholar 

  58. T.-W. Chen, Y.-W. Huang, T.-C. Chen, Y.-H. Chen, C.-Y. Tsai, L.-G. Chen,, “Architecture design of H.264/AVC decoder with hybrid task pipelining for high definition videos,” Proc. of 2005 International Symposium on Circuits and Systems (ISCAS 2005), 2005, pp. 2931-2934.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Chen, LG., Lian, CJ., Chen, CY., Chen, TC. (2006). Multimedia IP Development. In: Lin, YL.S. (eds) Essential Issues in SOC Design. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5352-5_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-5352-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-5351-1

  • Online ISBN: 978-1-4020-5352-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics