Skip to main content

RELIABILITY IN ESTIMATING URBAN GROUNDWATER RECHARGE THROUGH THE VADOSE ZONE

Managing Sustainable Development in Arid and Semiarid Regions

  • Conference paper
Urban Groundwater Management and Sustainability

Part of the book series: NATO Science Series ((NAIV,volume 74))

Abstract

Reliance on vadose zone models to estimate groundwater recharge in arid and semiarid regions of the United States is increasing due to limited groundwater supplies and continued urbanization. The success of vadose zone models in providing reliable estimates of urban recharge and other fluxes depends on the information content used to constrain the calibration process. In this study, a numerical experiment of artificial recharge through a three-layered vadose zone system revealed several findings related to coupled model calibration. First, the extension of vadose zone model calibration to three dependent variables added information content that enhanced parameter sensitivities. Second, predictive analysis using the calibration-constrained Monte Carlo approach was time-prohibitive because of the tendency toward local minima when using the gradient algorithm. Third, despite a perfect match to historical data, the affect of alternative starting calibration parameters sets on condition number illustrated the limitations of information quality on model uncertainty. Fourth, perfect observed / simulated profiles correlation coefficients for all calibration parameter sets, were, by themselves, poor indicators of model success. Fifth, the range of predictive recharge uncertainty, and uncertainty in energy and solute mass entering the groundwater system, estimated using the likelihood-type approach, is attributed to parameter non-uniqueness due to limited calibration information. For a calibration of a field system, the estimated range of predictive uncertainty would be larger because of additional uncertainty from errors in measurements and/or the conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Abbaspour, K. C., van Genuchten, M. Th., Schulin, R., and Schlppi, E., 1997, A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters. Water Resour. Res. 33(8):1879–1892.

    Article  Google Scholar 

  • American Petroleum Institute, 1997, Estimation of infiltration and recharge for environmental site assessment, Amer. Petrol.Inst. Soil and Groundwater Bull., (2), 4 pp.

    Google Scholar 

  • Anderson, M. G., and Bates, P. D., 2001, Model Validation - Perspectives in Hydrological Science. Wiley, Chichester, UK.

    Google Scholar 

  • Anderson, M. P., and Woessner, W. W., 1992, The role of the post audit in model validation, Adv. Water Resources, 15:167–173.

    Article  Google Scholar 

  • Bailey, M. A., 2001, Analysis of infiltration along an ephemeral stream: limitations to the application of the heat tracer method: 14th Annual Symposium, Arizona Hydrological Society, Water Issues and Partnerships for Rural Arizona, Tucson, Arizona, September 12–15, 2001.

    Google Scholar 

  • Burkham, D. E., 1970, Depletion of streamflow by infiltration in the main channels of the Tucson Basin, southeastern Arizona. U.S. Geol. Surv. Water-Supply Paper 1939-B.

    Google Scholar 

  • Carrera J., and Neuman, S. P., 1986, Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, Stability, and Solution Algorithm, Water Resour. Res., 38(28):1–14.

    Google Scholar 

  • Constantz, J., and Thomas, C. L., 1996, The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroys. Water Resour. Res., 32(12):3597–3602.

    Article  Google Scholar 

  • Doherty, J., 2000, PEST2000: Upgrade notes. Watermark Numerical Computing, S.S. Papadopoulous Assoc., Bethesda, Md., 34 pp.

    Google Scholar 

  • Doherty, J., 2001, PEST-ASP upgrade notes, Watermark Numerical Computing, 21 pp.

    Google Scholar 

  • Fogg, G. E., LaBolle, E. M., and Weissmann, G. S., 1995, Groundwater vulnerability assessment: Hydrogeologic perspective and example from Salinas Valley, California, in: Application of GIS, Remote Sensing, Geostatistical and Solute Transport Modeling, D. L. Corwin, K. Loague and T. R. Ellsworth, eds., AGU Geophysical Monograph 108, pp. 45– 61.

    Google Scholar 

  • Friedel, M. J., 2000, Documentation and verification of VST2D: a model for simulating transient, variably saturated, coupled water-heat-solute transport in heterogeneous, anisotropic, 2-dimensional, ground-water systems with variable fluid density. U.S. Geol. Surv. Water Resour. Invest. Rep. 00-4105, 124 pp.

    Google Scholar 

  • Friedel, M. J., 2002, Quantifying ground-water recharge using a coupled water-heat-solute transport model: optimal nonlinear parameter estimation and predictive uncertainty: EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract H21D-8060.

    Google Scholar 

  • Friedel, M. J., 2005, Coupled inverse modeling of vadose zone water, heat, and solute transport: parameter nonuniqueness and predictive uncertainty, J. Hydrol., 312(1–4): 148–175.

    Article  Google Scholar 

  • Gailey, R. M., Gorelick, S. M., and Crowe., A. S., 1991, Coupled process parameter estimation and prediction uncertainty using hydraulic head and concentration data, Adv. in Water Resour., 14(5):301–314.

    Article  Google Scholar 

  • Hendrickx, J. M. H., Kan, A. S., Bannick, M. H., Birch, D., and Kidd, C., 1991, Numerical analysis of groundwater recharge through stony soils using limited data. J. Hydrol. 127:173–192.

    Article  Google Scholar 

  • Hill, M., 1998, Methods and guidelines for effective model calibration. U.S. Geol. Sur. Water Resour. Invest. Rep. 98-4005, 90 pp.

    Google Scholar 

  • Hughson, D. L., Yeh, T.-C. J., 1998, A geostatistically based inverse model for threedimensional variably saturated flow. Stochastic Hydrol. and Hydraul. 12: 285–298.

    Article  Google Scholar 

  • Izbicki, J., Radyk, J., and Michel, R. L., 2000, Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA. J. Hydrol 238:194–217.

    Article  Google Scholar 

  • Leake, S. A., 1999, Southwest Ground-Water Resources Project, in Bartolino, J.R., ed., U.S. Geological Survey Middle Rio Grande Basin Study–Proceedings of the Third Annual Workshop, Albuquerque, New Mexico, February 24-25, 1999. U.S. Geol. Surv. Open- File Rep. 99-203, 92 pp.

    Google Scholar 

  • Mediana, A., and Carrera, J., 1996, Coupled estimation of flow and solute transport parameters, Water Resour. Res. 32(10):3063–3076.

    Article  Google Scholar 

  • Mehl, S., and Hill, M., 2001, A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results. Ground Water 39(2):300–307.

    Article  Google Scholar 

  • Munevar, A. and Marino, M. A., 1999, Modeling analysis of groundwater recharge potential on alluvial fans using limited data. Ground Water 37(5):649–659.

    Article  Google Scholar 

  • Pang, L., and Close, M. E., 1999, Field-scale physical non-equilibrium transport in an alluvial gravel aquifer, J. Contam. Hydrol. 38:447–464.

    Article  Google Scholar 

  • Pang, L., Close, M. E., Watt, J. P. C., and Vincent, K. W., 2000, Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D, J. Contam. Hydrol., 44:19–46.

    Article  Google Scholar 

  • Silliman, S. E., Ramierz, J., and McGabe, R. L., 1995, Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J. Hydrol. 167:99–119.

    Article  Google Scholar 

  • Simunek, J., van Genuchten, M. Th., Gribb, M. M., and Hopmans, J. W., 1998, Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil & Tillage Res. 47 (1–2):27–36.

    Article  Google Scholar 

  • Sun, N. and Yeh, W. G., 1990, Coupled inverse problems in groundwater modeling 2. Identifiability and experimental design. Water Res. Res. 26(10):2527–2540.

    Article  Google Scholar 

  • Vecchia, A. V., and Cooley. R. L., 1987, Simultaneous confidence intervals and prediction intervals for nonlinear regression models with application to a groundwater flow model. Water Resour. Res. 23(7): 1237–1250.

    Google Scholar 

  • Woodbury, A. D., and Smith, L., 1988, Simultaneous inversion of hydrogeologic and thermal data 2. Incorporation of thermal data. Water Resour. Res. 24(3):356–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Friedel, M.J. (2006). RELIABILITY IN ESTIMATING URBAN GROUNDWATER RECHARGE THROUGH THE VADOSE ZONE. In: Tellam, J.H., Rivett, M.O., Israfilov, R.G., Herringshaw, L.G. (eds) Urban Groundwater Management and Sustainability. NATO Science Series, vol 74. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5175-1_13

Download citation

Publish with us

Policies and ethics