Skip to main content

Insect Populations In Relation To Environmental Change In Forests Of Temperate Europe

  • Chapter
Invasive Forest Insects, Introduced Forest Trees, and Altered Ecosystems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andow, D.A. (1991). Vegetational diversity and arthropod population response. Annual Review of Entomology, 36, 561–586.

    Article  Google Scholar 

  • Ayres, M.P., & Lombardero M.J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. The Science of the Total Environment, 262, 263-286.

    Article  PubMed  CAS  Google Scholar 

  • Bale, J.S., Masters, G.J., Hodkinson, I.D., Awmack, C., Bezemer, T.M., Brown, V.K., et al. (2002). Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8, 1-16.

    Article  Google Scholar 

  • Baltensweiler, W. (1985). Waldsterben – forest pests and air-pollution. Zeitschrift fur Angewandte Etomologie – Journal of Applied Entomology, 99, 77-85.

    Google Scholar 

  • Barthod, C. (1994). Sylviculture et risques sanitaires dans les forêts tempérées - 1ère partie. Revue Forestière Française, 46, 609-628.

    Google Scholar 

  • Battisti, A. (1988). Phytophagous insects in the energy flow of an artificial stand of Pinus nigra Arnold in Northern Italy. Redia, 71, 139-159.

    Google Scholar 

  • Bezemer, T.M., & Jones, T.H. (1998). Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos, 82, 212-222.

    Article  Google Scholar 

  • Brooks, G.L., & Whittaker, J.B. (1999). Responses of three generations of a xylem-feeding insect, Neophilaenus lineatus (Homoptera), to elevated CO2. Global Change Biology, 5, 395-401.

    Article  Google Scholar 

  • Charnet, F., Delb, H., Dreyer, E., Landeau, S., Landmann, G., Makkonen-Spiecker, K., et al. (2004). Impacts of the Drought and Heat in 2003 on Forests. Freiburger Forstliche Forschung, 57, 1-70.

    Google Scholar 

  • Coupe, M.D., & Cahill, J.F. Jr (2003). Effects of insects on primary production in temperate herbaceous communities: a meta-analysis. Ecological Entomology, 28, 511–521.

    Article  Google Scholar 

  • Dury, S.J., Good, J.E.G., Perrins, C.M., Buse, A., & Kaye, T. (1998). The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Global Change Biology, 4, 55-61.

    Article  Google Scholar 

  • Ellenberg, H. (1986). Vegetation Mitteleuropas mit den Alpen. Stuttgart: Ulmer.

    Google Scholar 

  • Er, K.B.H., & Innes, J.L. (2003). The presence of old-growth characteristics as a criterion for identifying temperate forests of high conservation value. International Forestry Review, 5, 1-8. European Commission, (2002). Towards a guidance document on Natura 2000 and forestry “Challenges and Opportunities”. Brussels: DG ENV B2 Nature and Biodiversity.

    Google Scholar 

  • Fabbio, G., Merlo, M., & Tosi, V. (2003). Silvicultural management in maintaining biodiversity and resistance of forests in Europe—the Mediterranean region. Journal of Environmental Management, 67, 67–76.

    Article  PubMed  Google Scholar 

  • Fajer, E.P., Bowers, M.D., & Bazzaz, F.A. (1989). The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. Science, 243, 1198-1200.

    Article  PubMed  Google Scholar 

  • Fleischer, P. (2001). Long-term ecological research on forest ecosystems in the Tatra National Park. Ekologia-Bratislava, 20, 78-84.

    Google Scholar 

  • Floyd, D.W., Vonhof, S.L., & Seyfang, H.E. (2001). Forest sustainability - A discussion guide for professional resource managers. Journal of Forestry, 99, 8-28.

    Google Scholar 

  • Gadgil, P.D., & Bain, J. (1999). Vulnerability of planted forests to biotic and abiotic disturbances. New Forests, 17, 227-238.

    Article  Google Scholar 

  • Gaston, K.J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Gottschalk, K.W., & Twery, M.J. (1989). Gypsy moth in pine-hardwood mixtures. In T.A. Waldrop (Ed.) Pine-hardwood mixtures: a symposium on management and ecology of the type. (pp 50-58). USDA Forest Service General Technical Report SE 58.

    Google Scholar 

  • Haettenschwiler, S. & Schafellner, C. (1999). Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia, 118, 210-217.

    Article  Google Scholar 

  • Harrington, R., Fleming, R.A., & Woiwod, I.P. (2001). Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agricultural and Forest Entomology, 3, 233-240.

    Article  Google Scholar 

  • Hedgren, P.O., Schroeder, L.M. & Weslien, J. (2003). Tree killing by Ips typographus (Coleoptera: Scolytidae) at stand edges with and without colonized felled spruce trees. Agricultural and Forest Entomology, 5, 67-74.

    Article  Google Scholar 

  • Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Xiaosu, D., et al. (2001). Climate Change 2001: The Scientific Basis. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hunter, M.D. (2001). Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agricultural and Forest Entomology, 3, 153-159.

    Article  Google Scholar 

  • Jactel, H., Brockerhoff, E., & Duelli, P. (2004). A test of the biodiversity-stability theory: Meta-analysis of tree species diversity effects on insect pest infestations, and re-examination of responsible factors. In M. Scherer-Lorenzen, C. Körner, E.D., & Schulze, (Eds.), The functional significance of forest diversity. (pp. 235-262), Berlin: Springer.

    Google Scholar 

  • Jensen, T.S. (1991). Integrated pest management of the nun moth, Lymantria monacha (Lepidoptera: Lymantriidae) in Denmark. Forest Ecology and Management, 39, 29-34.

    Article  Google Scholar 

  • Jones, T.H., Thompson, L.J., Lawton, J.H., Bezemer, T.M., Bardgett, R.D., Blackburn, T.M., et al. (1998). Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science, 280, 441-443.

    Article  PubMed  CAS  Google Scholar 

  • Jonsell, B. (2004). Flora Nordica. General Volume. Stockholm: The Bergius Foundation, Royal Swedish Academy of Sciences.

    Google Scholar 

  • Koricheva, J., Mulder, C.P.H., Schmid, B., Joshi, J., & Huss-Danell, K. (2000). Numerical responses of different trophic groups of invertebrates to manipulations of plant diversity in grassland. Oecologia, 125, 271–282.

    Article  Google Scholar 

  • Landmann, G. (1998). Forest health, silviculture and forest management. In R. Montoya (Ed.), Problemas sanitarios en los sistemas forestales: de los espacios protegidos a los cultivos de especies de crecimiento rapido. (pp 155-183), Madrid: Collecion Tecnica, Publicaciones del Organismo Autonomo Parques Nacionales.

    Google Scholar 

  • Lasch, P., Lindner, M., Erhard, M., Suckow, F., & Wenzel, A. (2002). Regional impact assessment on forest structure and functions under climate change—the Brandenburg case study. Forest Ecology and Management, 162, 73–86.

    Article  Google Scholar 

  • Lindner, M., Sohngen, B., Joyce, L.A., Price, D.T., Bernier, P.J., & Karjalainen, T. (2002). Integrated forestry assessment for climate change impacts. Forest Ecology and Management, 162, 117-136.

    Article  Google Scholar 

  • Lindroth, R.L., Kinney, K.K., & Platz, C.L. (1993). Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance. Ecology, 74, 763–777.

    Article  CAS  Google Scholar 

  • Litvak, M.E., Constable, J.V.H., & Monson, R.K. (2002). Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia, 132, 382–391.

    Article  Google Scholar 

  • Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M., & Wanner, H. (2004). European seasonal and annual temperature variability, trends, and extremes since 1500. Science, 303, 1499-1503.

    Article  PubMed  CAS  Google Scholar 

  • McCann, K.S. (2000). The diversity-stability debate. Nature, 405, 228-233.

    Article  PubMed  CAS  Google Scholar 

  • May, R.M. (1973). Stability and complexity in model ecosystems. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Michalski, J., & Arditi, R. (1999). The complexity-stability problem in food web theory. What can we learn from exploratory models? In F. Blasco, & A. Weill (Eds.), Advances in Environmental and Ecological Modelling. (pp 91-119). Paris: Elsevier.

    Google Scholar 

  • Mulder, C.P.H., Koricheva, J., Huss-Danell, K., Hogberg, P., & Joshi, J. (1999). Insects affect relationships between plant species richness and ecosystem processes. Ecology Letters, 2, 237-246.

    Article  Google Scholar 

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.

    Article  PubMed  CAS  Google Scholar 

  • Percy, K.E., Awmack, C.S., Lindroth, R.L., Kubiske, M.E., Kopper, B.J., Isebrands, J.G., et al. (2002). Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature, 420, 403- 407.

    Article  PubMed  CAS  Google Scholar 

  • Pietsch, S.A., & Hasenauer, H. (2002). Using mechanistic modeling within forest ecosystem restoration. Forest Ecology and Management, 159, 111-131.

    Article  Google Scholar 

  • Pimm, S.L., & Lawton, J.H. (1978). On feeding on more than one trophic model. Nature, 275, 542-544.

    Article  Google Scholar 

  • Price, P.W. (1984). Insect ecology. 2nd edition. New York: Wiley.

    Google Scholar 

  • Root, R.B. (1973). Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards, Brassica oleracea. Ecological Monographs, 43, 95-124.

    Article  Google Scholar 

  • Root, T.L., Price, J.T., Hall, K.R., Schneider, S.H., Rosenzweig, C., & Pounds, J.A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S.K., & Lindroth, R.L. (1994). Effects of CO2-mediated changes in paper birch and white pine chemistry on gypsy moth performance. Oecologia, 98, 133-138.

    Article  Google Scholar 

  • Roth, S.K., & Lindroth, R.L. (1995). Elevated atmospheric CO2 effects on phytochemistry, insect performance and insect parasitoid interactions. Global Change Biology, 1, 173-82.

    Article  Google Scholar 

  • Scarascia-Mugnozza, G., Oswald, H., Piussi, P., & Radoglou, K. (2000). Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecology and Management, 132, 97–109.

    Article  Google Scholar 

  • Schroeder, L.M. & Lindelöw, A. (2002). Attacks on living spruce trees by the bark beetle Ips typographus (Col. Scolytidae) after storm felling: a comparison between stands with and without removal of wind-felled trees. Agricultural and Forest Entomology, 4, 47-56.

    Article  Google Scholar 

  • Schroeder, L.M. & Lindelöw, A. (2003) Response of Ips typographus (Scolytidae: Coleoptera) and other bark- and wood-boring beetles to a flash-flood event. Scandinavian Journal of Forest Research 18, 218-224.

    Article  Google Scholar 

  • Schwerdtfeger, F. (1981). Die Waldkrankhelten. III Auf. Berlin: Parey.

    Google Scholar 

  • Sinclair, B.J., Vernon, P., Klok, C.J., & Chown, S.L. (2003). Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution, 18, 257-262.

    Article  Google Scholar 

  • Smith, P.H.D., & Jones, T.H. (1998). Effects of elevated CO2 on the chrysanthemum leafminer, Chromatomyia syngenesiae: a green-house study. Global Change Biology, 4, 287-291.

    Article  Google Scholar 

  • Speight, M.R., & Wainhouse, D. (1989). Ecology and management of forest insects. Oxford, UK: Clarendon.

    Google Scholar 

  • Speight, M.R., Hunter, M.D., & Watt, A.D. (1999). Ecology of insects: concepts and applications. Oxford UK: Blackwell.

    Google Scholar 

  • Spiecker, H. (2003). Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone. Journal of Environmental Management, 67, 55–65.

    Article  PubMed  Google Scholar 

  • Spiecker, H. (2004). Norway Spruce Conversion – Options and Consequences. EFI Research Reports 18. Leiden: Brill.

    Google Scholar 

  • Stiling, P., Rossi, A.M., Hungate, B., Dijkstra, P., Hinkle, C.R., Knott, W.M., & Drake B (1999). Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecological Applications, 9, 240-244.

    PubMed  CAS  Google Scholar 

  • van der Meer, P.J., Jorritsma, I.T.M., & Kramer, K. (2002). Assessing climate change effects on longterm forest development: adjusting growth, phenology, and seed production in a gap model. Forest Ecology and Management, 162, 39–52.

    Article  Google Scholar 

  • van Kooten, GC, Eagle, AJ, Manley, J, & Smolak, T. (2004). How costly are carbon offsets? A metaanalysis of carbon forest sinks. Environmental Science & Policy, 7, 239-251.

    Article  Google Scholar 

  • Walther, G-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389-395.

    Article  PubMed  CAS  Google Scholar 

  • Watt, A.D. (1992). Insect pest population dynamics: Effects of tree species diversity. In M.G.R. Cannell, D.C. Malcolm, & P.A. Robertson (Eds.), The Ecology of Mixed-Species Stands of Trees. (pp 267- 275), Oxford, UK: Blackwell.

    Google Scholar 

  • White, J.A., & Whitham, T.G. (2000). Associational susceptibility of cottonwood to a box elder herbivore. Ecology, 81, 1795-1803.

    Google Scholar 

  • Williams, D.W., & Liebhold, A.M. (1995). Herbivorous insects and global change - potential changes in the spatial-distribution of forest defoliator outbreaks. Journal of Biogeography, 22, 665-671.

    Article  Google Scholar 

  • Williams, R.S., Lincoln, D.E., & Thomas, R.B. (1994). Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance. Oecologia, 98, 64-71.

    Article  Google Scholar 

  • Zhang, Q-H., & Schlyter, F. (2004). Olfactory recognition and behavioural avoidance of angiosperm nonhost volatiles by conifer-inhabiting bark beetles. Agricultural and Forest Entomology, 6, 1–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Battisti, A. (2008). Insect Populations In Relation To Environmental Change In Forests Of Temperate Europe. In: Invasive Forest Insects, Introduced Forest Trees, and Altered Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5162-X_7

Download citation

Publish with us

Policies and ethics