Skip to main content
  • 888 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adersen, A., Adersen, H., & Brimer, L. (1988). Cyanogenic constituents in plants from the Galapagos Islands. Biochemistry Systematics and Ecology, 16, 65-77.

    Article  Google Scholar 

  • Alfaro, E. Tomlin, J.A. Borden & K. Lewis. (1999). Interaction of the white pine weevil and its hosts: arguments for coevolution. pp. 31-39, In F. Lieutier, W.J. Mattson, M.R. Wagner (Eds.), Physiology and genetics of tree-phytophage interactions. Proceedings of an IUFRO meeting, Gujan,France. Aug. 31-Sept. 5, 1997. INRA, Paris. 374 pp.

    Google Scholar 

  • Allan, H. H. (1982). Flora of New Zealand. Vol.1. Wellington : Hasselberg, Government Printer,

    Google Scholar 

  • Barbosa, P., & Krischik, V. A. (1987). Influence of alkaloids on feeding preference of eastern deciduous forest trees by the Gypsy moth, Lymantria dispar. American Naturalist, 130, 53-69.

    Article  CAS  Google Scholar 

  • Bohm, B. A. (1998). General evolutionary patterns and processes on oceanic islands. In T.F. Stuessy & M. Ono (Eds.), Evolution and speciation of island plants. Cambridge University Press.

    Google Scholar 

  • Bowen, E. & van Vuren, D. (1997). Insular endemic plants lack defences against herbivores. Conservation Biology, 11, 1249-1254.

    Article  Google Scholar 

  • Carlquist, S. (1974). Island biology. New York: Columbia University Press.

    Google Scholar 

  • Coley, P.D. (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs, 53, 209-233.

    Article  Google Scholar 

  • Coley, P. D., Bryant, J. P. & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899.

    Article  PubMed  Google Scholar 

  • Coley, P. D. (1988). Effects of plant growth rate and leaf lifetime on the amount and type of antiherbivore defense. Oecologia, 74, 531- 536.

    Article  Google Scholar 

  • Coley, P. D. & Barone, J. A. (1996). Herbivory and plant defences in tropical forests. Annual Review of Ecology & Systematics, 27, 305-335.

    Article  Google Scholar 

  • Cornell, H. V. & Hawkins, B. A. (2003). Herbivore response to plant secondary compounds: A test of phytochemical coevolution theory. American Naturalist, 161; 508-522.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. London: John Murray

    Google Scholar 

  • Dethier, V. G. (1954). Evolution of feeding preferences in phytophagous insects. Evolution, 8,

    Google Scholar 

  • Dobzhansky, T. (1950). Evolution in the tropics. American Scientist, 38, 209-221

    Google Scholar 

  • Dugdale, J. S. (1975). The insects in relation to plants. In G. Kuschel, ed. Biogeography and ecology in New Zealand. Monographiae Biologicae 27, The Hague: Junk,

    Google Scholar 

  • Dyer, L. A. & Coley, P. D. (2002). Tritrophic interactions in tropical versus temperate communities. In T. Tscharntke & B. A. Hawkins (Eds.), Multitrophic level interactions. Cambridge University Press

    Google Scholar 

  • Edwards, P. J. & Wratten, S. D. (1980). Ecology of insect-plant interactions. Studies in Biology 121. London: Edward Arnold

    Google Scholar 

  • Edwards, P. J., Wratten, S. D. & Greenwood, S. (1986). Palatability of British trees to insects: constitutive and induced defences. Oecologia, 69, 316-319.

    Article  Google Scholar 

  • Erlich, P. R. & Raven, P. H. (1964). Butterflies and plants: a study in coevolution. Evolution, 18, 586- 608.

    Article  Google Scholar 

  • Feeny, P. (1975). Biochemical coevolution between plants and their insect herbivores. In L.E. Gilbert & P.H. Raven (Eds.), Coevolution of animals and plants. Austin: University of Texas Press.

    Google Scholar 

  • Feeny, P. (1976). Plant apparency and chemical defence. Recent Advances in Phytochemistry, 10, 1-40.

    CAS  Google Scholar 

  • Forkner, R. E., Marquis, R. J. & Lill, J. T. (2004). Feeny revisited: condensed tannins as anti-herbivore defences in leaf-chewing herbivore communities of Quercus. Ecological Entomology, 29, 174-187

    Article  Google Scholar 

  • Futuyma, D. J. & Mitter, C. (1997). Insect-plant interactions: the evolution of component communities. In: Silvertown, J.; Franco, M.; Harper, J. L. (Eds.), Plant Life Histories (pp 253-264). UK: Cambridge University Press.

    Google Scholar 

  • Hairston, N. G., Smith, F. E. & Slobodkin L. B. (1960). Community structure, population control and competition. American Naturalist, 94, 421-425.

    Article  Google Scholar 

  • Herms. D. A. & Mattson, W. J. (1992). The dilemma of plants to grow or defend. Quarterly Review of Biology, 67, 283-335.

    Article  Google Scholar 

  • Holt, R. D. (1996). Food webs in space: an island biogeographic perspective. In G.A. Polis and K.O. Winemiller. (Eds.), Food Webs. Integration of patterns and Dynamics (pp. 312-323). New York: Chapman and Hall,

    Google Scholar 

  • Holt, R. D., Lawton, J. H., Polis, G. A., & Martinez, N. D. 1999. Trophic rank and the species-area relationship. Ecology, 80, 1495-1504.

    Google Scholar 

  • Holt, R. D. & Loreau, M., (2001). Biodiversity and ecosystem functioning: the role of trophic interactions and the importance of system openness. In A. P. Kinzig, S. W. Pacala & D. Tilman (Eds.), The functional consequences of biodiversity: empirical progress and theoretical extensions (pp. 246- 262). Princeton: Princeton University Press,

    Google Scholar 

  • Hosking, G.P., Clearwater, J., Handiside, J., Kay, M., Ray, J. & Simmons, N. (2003). Tussock moth eradication – a success story from New Zealand. International Journal of Pest Management, 49, 17- 24.

    Article  CAS  Google Scholar 

  • Hunter, M. D., & Price, P. W. (1992). Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology, 73, 724-732.

    Google Scholar 

  • Janzen, D. H. (1968). Host plants as islands in evolutionary and contemporary time. American Naturalist, 102, 592-595.

    Article  Google Scholar 

  • Janzen, D. H. (1974). Tropical blackwater rivers, animals and mast fruiting by the Dipterocarpaceae. Biotropica, 6, 69-103.

    Article  Google Scholar 

  • Janzen, D. H. (1975). The ecology of plants in the tropics. Studies in Biology. 58, London: Edward Arnold.

    Google Scholar 

  • Kay, M. K. (2002). The investigation of the suitability of the New Zealand forest flora for the reproduction and development of Lymantriid species. Unpubl. MAF Research Report, 42pp.

    Google Scholar 

  • Kay, M.K. (2003). Macroecology and the prediction of invasive invertebrate guilds. Goldson, S & Suckling, M. (Eds.), Defending the Green Oasis: New Zealand Biosecurity and Science. Proceedings of the Plant Protection Society NZ., Biosecurity Symposium, Rotorua, 2003

    Google Scholar 

  • Kay, M. K. (2004). An assessment of the risk to the New Zealand flora posed by Japanese strains of the Gypsy moth and the Fall web-worm . Unpubl. MAF Research Report, 29pp.

    Google Scholar 

  • Kay, M., Matsuki, M., Serin, J. & Scott, J.K. (2000). A risk assessment of the Asian gypsy moth to key elements of the New Zealand flora. Unpbl. MAF Research Report 82pp.

    Google Scholar 

  • Kay, M. K. & Wratten, S. D. (2004). Ecosystem function and the prediction of tree resistance to defoliators. In N. Kamata (Ed.), Proceedings International Symposium of the Kanazawa University 21st Century COE Program., 11.-15.11.2003, Kanzawa University, Japan, in press

    Google Scholar 

  • Kinzig, A. P., Pacala, S. W. & Tilman, D. (Eds.) (2001). The functional consequences of biodiversity. Monograph of Population Biology 33, Princeton: Princeton University Press.

    Google Scholar 

  • Komonen, A., Penttilä, R., Lindgren, M. & Hanski, I. (2000). Forest fragmentation truncates a food chain based on an old-growth forest bracket fungus. Oikos, 90, 119-126.

    Article  Google Scholar 

  • Kreuss, A. & Tscharntke T. (1994). Habitat fragmentation, species loss and biological control. Science, 264, 1581-1584.

    Article  Google Scholar 

  • Lawton, J. H. (2000). Community ecology in a changing world. Excellence in Ecology 11, Germany: Ecology Institute.

    Google Scholar 

  • Levin, D. A. (1975). Pest pressure and recombination systems in plants. American Naturalist, 109, 437- 451

    Article  Google Scholar 

  • Levin D. A. (1976). Alkaloid-bearing plants: an ecogeographical perspective. American Naturalist, 110, 261-84

    Article  Google Scholar 

  • Lindroth, R.L., & J.D.C. Hemming. (1990). Responses of the gypsy moth (Lepidoptera: Lymantriidae) to tremulacin, an aspen phenolic glycoside. Environmental Entomology, 19, 842-847.

    CAS  Google Scholar 

  • MacArthur, R. H. & Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Mark, A. F. & Lee, W. G. (1985). Ecology of hard beech (Nothofagus truncata) in southern outlier stands in the Haast ecological district, South Westland, New Zealand. New Zealand Journal of Ecology, 8, 97-115

    Google Scholar 

  • Matsuki, M., Kay, M., Serin, J., Floyd, R. & Scott, J. K. (2001). Potential risk of accidental introduction of Asian gypsy moth (Lymantria dispar) to Australasia: effects of climatic conditions and suitability of native plants. Agricultural and Forest Entomology, 3, 305-320.

    Article  Google Scholar 

  • McQuillan, P. B. (1993). Nothofagus (Fagaceae) and its invertebrate fauna- an overview and preliminary synthesis. Biological Journal of the Linnean Society, 49, 317-354.

    Article  Google Scholar 

  • Miller, J. C. & Hanson, P. E. (1989). Laboratory feeding tests on the development of gypsy moth larvae with reference to plant taxa and allelochemicals. Bulletin of the Agricultural Experimental Station, Oregon State University 674, 1-63

    Google Scholar 

  • Moody, S. (1978). Latitude, continental drift and the percentage of alkaloid-bearing plants in floras. American Naturalist, 113, 965-72

    Google Scholar 

  • Ogden, J., Stewart, G. H. & Allen, R. B. (1996). Ecology of New Zealand Nothofagus forests. In T. T. Veblen, R.S. Hill & J Read (Eds.), The Ecology and Biogeography of Nothofagus Forests (pp 25- 82). Hew Haven: Yale University Press.

    Google Scholar 

  • Opler, P. A. (1974). Oaks as evolutionary islands for leaf-mining insects. American Science, 62, 67-73

    Google Scholar 

  • Paulay, G. (1994). Biodiversity on oceanic islands: its origin and extinction. American Zoologist, 34, 134- 144

    Google Scholar 

  • Pianka, E. R. (1966). Latitudinal gradients in species diversity: a review of concepts. American Naturalist, 100, 33-46

    Article  Google Scholar 

  • Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist, 138, 123-155

    Article  Google Scholar 

  • Price, P. W. (1991). The plant vigor hypothesis and herbivore attack. Oikos, 62, 244-251

    Article  Google Scholar 

  • Primack, R. (2002). Essentials of conservation biology. 3rd ed. Massachusetts: Sinauer Associates Inc.

    Google Scholar 

  • Rhoades, D.F. & Cates, R.G. (1976). Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry, 10, 168-213

    CAS  Google Scholar 

  • Rosenzweig, M. L. (1995). Species Diversity in Space and Time. UK: Cambridge University Press.

    Google Scholar 

  • Rosenzweig, M. L. (1997). Species diversity and latitudes: listening to area’s signal. Oikos, 80, 172-176

    Article  Google Scholar 

  • Russell, G. B., Bowers, W. S., Keesing, V., Niemeyer, H. M., Sevenet, T., Vasanthaverni, S. & Wratten, S. D. (2000). Patterns of bioactivity and herbivory on Nothofagus species from Chile and New Zealand. Journal of Chemical Ecology, 26(1), 41-56.

    Article  CAS  Google Scholar 

  • Schoener, T. W. (1989). Food webs from the small to the large. Ecology, 70, 1559-89.

    Article  Google Scholar 

  • Schoenly, K., Beaver, R. A. & Heumier, T. A. (1991). On the trophic relations of insects: a food-web approach. American Naturalist, 137, 597-638.

    Article  Google Scholar 

  • Southwood, T. R. E. (1961). The number of species of insect associated with various trees. Journal of Animal Ecology, 30, 1-8.

    Article  Google Scholar 

  • Stern, K. & Roche, L. (1974). Genetics of forest ecosystems. Ecological Studies 6. New York: Springer- Verlag,

    Google Scholar 

  • Strong, D. R. (1992). Are all trophic cascades wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73 (3), 747-754.

    Article  Google Scholar 

  • Strong, D. R., Lawton J. H. & Southwood, R. (1984). Insects on Plants: Community patterns and mechanisms. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Tuley, G. (1980). Nothofagus in Britain. For. Comm. Forest Record 122

    Google Scholar 

  • Veblen, T. T., Donso, C., Kitzberger, T. & Rebertus, A. J. (1996). Ecology of Southern Chile and Argentina Nothofagus forests. In T. T. Veblen, R. S. Hill, & J. Read (Eds.), The Ecology and Biogeography of Nothofagus Forests, (pp 293-353). Hew Haven: Yale University Press.

    Google Scholar 

  • Walker, M. and Jones, T. H. 2001. Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant-insect-natural enemy systems. Oikos, 93, 177-187.

    Article  Google Scholar 

  • Wallace A. R. (1855). On the law which has regulated the introduction of new species. Annual Magazine of Natural History, 16, 184-196.

    Google Scholar 

  • Wallace, A. R. (1878). Tropical nature and other essays. New York: MacMillan.

    Google Scholar 

  • Wardle, D. A., Zackrisson, O., Hornberg, G., & Gallet, C. (1997). The influence of island area on ecosystem properties. Science 277, 1296-1299.

    Article  CAS  Google Scholar 

  • Watson D. M. (2002). A conceptual framework for the study of species composition in islands, fragments and other patchy habitats. Journal of Biogeography, 29, 823–34.

    Article  Google Scholar 

  • White, T. C. R. (1978). The importance of a relative shortage of food in animal ecology. Oecologia, 33, 71-86

    Article  Google Scholar 

  • Wilson, E. O. (2001). Preface to Edition 2. The Theory of Island Biogeography. MacArthur, R. H. & Wilson, E. O. Princeton: Princeton University Press.

    Google Scholar 

  • Whittaker, R. J. (1998). Island biogeography. Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kay, M.K. (2008). Are Island Forests Vulnerable to Invasive Defoliators?. In: Invasive Forest Insects, Introduced Forest Trees, and Altered Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/1-4020-5162-X_1

Download citation

Publish with us

Policies and ethics