Skip to main content

Chemoinformatics Theory

  • Chapter
Chemoinformatics
  • 1738 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrafiotis DK (2002) Multiobjective optimization of combinatorial libraries. J Comput Aided Mol Des 16:335–356.

    Article  CAS  Google Scholar 

  • Agrafiotis DK, Rassokhin DN, Lobanov VS (2001) Multi-dimensional scaling and visualization of large molecular similarity tables. J Comput Chem 22:488–500.

    CAS  Google Scholar 

  • Bajorath J (2002) Integration of virtual and high-throughput screening. Nat Rev Drug Discov 1:882–894.

    Article  CAS  Google Scholar 

  • Bajorath J (2004) Understanding chemoinformatics: a unifying approach. Drug Discov Today 9:13–14.

    Article  Google Scholar 

  • Brown FK (1998) Chemoinformatics: what is it and how does it impact drug discovery. Annu Rep Med Chem 33:375–384.

    Article  CAS  Google Scholar 

  • Clark DE, Picket SD (2000) Computational methods for the prediction of “drug-likeness”. Drug Discov Today 5:49–58.

    Article  CAS  Google Scholar 

  • Cramer RD III, Redl G, Berkoff CE (1974) Substructural analysis: a novel approach to the problem of drug design. J Med Chem 17:533–535.

    Article  CAS  Google Scholar 

  • Cramer RD III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steriods to carrier proteins. J Am Chem Soc 110:5959–5967.

    Article  CAS  Google Scholar 

  • Egan WJ, Merz KM Jr, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877.

    Article  CAS  Google Scholar 

  • Forrest S (1993) Genetic algorithms – Principles of natural selection applied to computation. Science 261:872–878.

    Article  CAS  Google Scholar 

  • Free SM Jr, Wilson JW (1964) A mathematical contribution to structure-activity studies. J Med Chem 7:395–399.

    Article  CAS  Google Scholar 

  • Gillet VJ (2002) Reactant- and product-based approaches to the design of combinatorial libraries. J Comput Aided Mol Des 16:371–380.

    Article  CAS  Google Scholar 

  • Gillet VJ, Khatib W, Willet P et al. (2002) Combinatorial library design using multiobjective genetic algorithm. J Chem Inf Comput Sci 42:375–385.

    Article  CAS  Google Scholar 

  • Gillet VJ, Willett P, Bradshaw J (2003) Similarity searching using reduced graphs. J Chem Inf Comput Sci 43:338–345.

    Article  CAS  Google Scholar 

  • Godden JW, Furr JR, Xue L et al. (2004) Molecular similarity analysis and virtual screening by mapping of consensus positions in binary-transformed chemical descriptor spaces with variable dimensionality. J Chem Inf Comput Sci 44:21–29.

    Article  CAS  Google Scholar 

  • Gund P (1977) Three-dimensional pharmacophore pattern searching. In: Hahn FE (ed), Progress in molecular and subcellular biology, vol 5. Springer-Verlag, Berlin, pp 117–142.

    Google Scholar 

  • Hann M, Green R (1999) Chemoinformatics – a new name for an old problem? Curr Opin Chem Biol 3:379–383.

    Article  CAS  Google Scholar 

  • Hansch C, Fujita T (1964) r-s-p analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626.

    Article  CAS  Google Scholar 

  • Hopfinger AJ (1980) A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape Analysis. J Am Chem Soc 102:7196–7206.

    Article  CAS  Google Scholar 

  • Hopfinger AJ, Wang S, Tokarski JS et al. (1997) Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 119:10509–10524.

    Article  CAS  Google Scholar 

  • Jarvis RA, Patrick EA (1973) Clustering using a similarity measure based on shared near neighbors. IEEE Trans Comput C22:1025–1034.

    Google Scholar 

  • Johnson MA, Maggiora GM (eds) (1990) Concepts and applications of molecular similarity. Wiley, New York, 1990.

    Google Scholar 

  • Kier LB (1997) Kappa shape indices for similarity analysis. Med Chem Res 7:394–406

    CAS  Google Scholar 

  • Kitchen DB, Stahura FL, Bajorath J (2004) Computational techniques for diversity analysis and compound classification. Mini Rev Med Chem 4:1029–1039.

    CAS  Google Scholar 

  • Klopman G, Zhao H (2001) Estimation of aqueous solubility of organic molecules by the group contribution approach. J Chem Inf Comput Sci 41:439–445.

    Article  CAS  Google Scholar 

  • Kohonen T (1989) Self-organization and associative memory. Springer-Verlag, Berlin.

    Google Scholar 

  • Labute P (1999) Binary QSAR: a new method for the determination of quantitative structure activity relationships. Pac Symp Biocomput 4:444–455.

    Google Scholar 

  • Lajiness MS (1997) Dissimilarity-based compound selection techniques. Perspect Drug Discov Des 7/8:65–84.

    Google Scholar 

  • Lajiness MS, Shanmugasundaram V (2004) Strategies for the identification and generation of informative compound sets. Methods Mol Biol 275:111–130, 2004.

    Article  CAS  Google Scholar 

  • Lewell XQ, Judd DB, Watson SP, Hann MM (1998) RECAP – retrosynthetic combinatorial analysis procedure: a powerful new synthetic technique for identifying privileged molecular fragments with useful application in combinatorial chemistry. J Chem Inf Comput Sci 38:511–522.

    Article  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23:3–25.

    Article  CAS  Google Scholar 

  • Martin EJ, Blaney JM, Siani MA et al. (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J Med Chem 38:1431–1436.

    Article  CAS  Google Scholar 

  • Martin YC (2001) Diverse viewpoints on computational aspects of molecular diversity. J Comb Chem 3:231–250.

    Article  CAS  Google Scholar 

  • Mason JS, Morize I, Menard PR et al. (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: overview over the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J Med Chem 42:3251–3264.

    Article  CAS  Google Scholar 

  • Muegge I (2003) Selection criteria for drug-like compounds. Med Res Rev 23:302–321

    Article  CAS  Google Scholar 

  • Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discov Des 9:339–353.

    Article  Google Scholar 

  • Rishton GM (2003) Non-lead-likeness and lead-likeness in biochemical screening. Drug Discov Today 8:86–96.

    Article  CAS  Google Scholar 

  • Roberts G, Myatt GJ, Johnson WP et al. (2000) LeadScope: software for exploring large sets of screening data. J Chem Inf Comput Sci 40:1302–1314.

    Article  CAS  Google Scholar 

  • Rusinko A III, Farmen MW, Lambert CG et al. (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci 39:1017–1026.

    Article  CAS  Google Scholar 

  • Schnur D, Beno BR, Good A, Tebben A (2004) Approaches to target class combinatorial library design. Methods Mol Biol 275:355–377.

    CAS  Google Scholar 

  • Selick HE, Beresford AP, Tarbit MH (2002) The emerging importance of predictive ADME simulation in drug discovery. Drug Discov Today 7:109–116.

    Article  Google Scholar 

  • Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911.

    Article  Google Scholar 

  • Stahura FL, Bajorath J (2004) Virtual screening methods that complement HTS. Comb Chem High Throughput Screening 7:259–269.

    CAS  Google Scholar 

  • Stanton DT, Jurs PC (1990) Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal Chem 62:2323–2329.

    Article  CAS  Google Scholar 

  • Tetko IV, Kovalishyn VV, Livingstone DJ (2001) Volume learning algorithm artificial neural networks for 3D-QSAR studies. J Med Chem 44:2411–2420.

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors. In: Mannhold R, Kubinyi H, Timmerman H (eds), Methods and principles in medicinal chemistry 11. WILEY-VCH, Weinheim.

    Google Scholar 

  • Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – and overview. Drug Discov Today 3:160–178.

    Article  CAS  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244.

    Article  Google Scholar 

  • Warmuth MK, Liao J, Rätsch G et al. (2003) Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 43:667–673.

    Article  CAS  Google Scholar 

  • Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36.

    Article  CAS  Google Scholar 

  • Willett P (1987) A review of chemical structure retrieval systems. J Chemometrics 1:139–155.

    Article  CAS  Google Scholar 

  • Willett P (1988) Recent trends in hierarchic document clustering: a critical review. Inf Process Manag 24:577–597.

    Article  Google Scholar 

  • Xue L, Bajorath J (2000) Molecular descriptors for effective classification of biologically active compounds based on principal component analysis identified by a genetic algorithm. J Chem Inf Comput Sci 40:667–673.

    Google Scholar 

  • Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley-VCH, Weinheim.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Chemoinformatics Theory. In: Chemoinformatics. Springer, Dordrecht . https://doi.org/10.1007/1-4020-5001-1_1

Download citation

Publish with us

Policies and ethics