Skip to main content

SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES

  • Conference paper
Carbon Nanotubes

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 222))

Abstract

This paper briefly reviews scanning tunneling microscopy with emphasis on the particularities that have the most significant influence on the STM and STS characterization of both single-wall and multi-wall carbon nanotubes. The experimental results obtained on these carbon nanotubes are surveyed together with computer modeling of the STM images of carbon nanotubes and the role of structural defects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes,(Academic Press, San Diego, 1996).

    Google Scholar 

  3. Carbon Filaments and Nanotubes: Common Origins, Different Applications? edited by L. P. Biró, C. A. Bernardo, G. G. Tibbetts and Ph. Lambin (Kluwer Acad. Publ., Dordrecht, 2001).

    Google Scholar 

  4. S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  5. G. E. Scuseria, Negative curvature and hyperfullerenes, Chem. Phys. Lett. 195, 534–536 (1992).

    Article  CAS  Google Scholar 

  6. L. A. Chernozatonskii, Carbon nanotube connectors and planar jungle gyms, Phys. Lett. A 172, 173 (1992).

    Article  Google Scholar 

  7. B. I. Dunlap, Connecting carbon tubules, Phys. Rev. B 46, 1933–1936 (1992).

    Article  CAS  Google Scholar 

  8. S. Ihara, S. Itoh, and J. Kitakami, Helically coiled cage forms of graphitic carbon, Phys. Rev. 548, 5643–5647 (1993).

    Google Scholar 

  9. S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov, and J. B. Nagy, A formation mechanism for catalytically grown shaped graphite nanotubes, Science 265, 635–639 (1994).

    CAS  Google Scholar 

  10. J. Li, C. Papadopoulos, and J. M. Xu, Nanoelectronics: Growing Y-junction carbon nanotubes, Nature 402, 253–254 (1999).

    CAS  Google Scholar 

  11. L. P. Biró, S. D. Lazarescu, P. A. Thiry, A. Fonseca, J. B. Nagy, A. A. Lucas, and Ph. Lambin, Scanning tunneling microscopy observation of tightly wound, single-wall coiled carbon nanotubes, Europhys. Lett. 50, 494 (2000).

    Article  Google Scholar 

  12. L. P. Biró, R. Ehlich, Z. Osváth, A. Koós, Z. E. Horváth, J. Gyulai, and J. B. Nagy, Room temperature growth of single-wall coiled carbon nanotubes and Y-branches, Mat. Sci. Eng. C 19, 3 (2002).

    Article  Google Scholar 

  13. L. P. Biró, G. I. Márk, A. A. Koós, J. B. Nagy, Ph. And Lambin, Coiled carbon nanotube structures with supraunitary nonhexagonal to hexagonal ring ratio, Phys. Rev. B 66, 165405 (2002).

    Article  Google Scholar 

  14. D. Reznik, C. H. Olk, D. A. Neumann, and J. R. D. Copley, X-ray powder diffraction from carbon nanotubes and nanoparticles, Phys. Rev. B 52, 116–124 (1995).

    Article  CAS  Google Scholar 

  15. Ph. G. Collins, M. S. Arnold, and Ph. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science 292, 706–709 (2001).

    Article  CAS  Google Scholar 

  16. R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy, Cambridge University Press, Cambridge (1994).

    Google Scholar 

  17. J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805–813 (1985).

    Article  CAS  Google Scholar 

  18. R. Wiesendanger and H.-J. Güntherodt (Editors), Scanning Tunneling Microscopy III, Spriger-Verlag, (1993).

    Google Scholar 

  19. W. Clauss, Scanning tunneling microscopy of carbon nanotubes, Appl. Phys. A 69, 275–281 (1999).

    Article  CAS  Google Scholar 

  20. G. I. Márk, L. P. Biró, and J. Gyulai, Simulation of STM images of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes, Phys. Rev. B 58, 12645–12648 (1998).

    Article  Google Scholar 

  21. Animated computer simulations showing the tunneling through a supported nano-object are available at: http://www.mfa.kfki.hu/int/nano/

    Google Scholar 

  22. L. P. Biró, J. Gyulai, Ph. Lambin, J. B.Nagy, S. Lazarescu, G. I. Márk, A. Fonseca, P. R. Surján, Zs. Szekeres, P. A. Thiry, and A. A. Lucas, Scanning tunneling microscopy (STM) imaging of carbon nanotubes, Carbon 36, 689–696 (1998).

    Article  Google Scholar 

  23. G. I. Márk, L. P. Biró, J. Gyulai, P. A. Thiry, A. A. Lucas, and Ph. Lambin, Simulation of scanning tunneling spectroscopy of supported carbon nanotubes, Phys. Rev. B 62, 2797–2805 (2000).

    Article  Google Scholar 

  24. L. P. Biró and G. Márk, STM investigation of Carbon Nanotubes in Ref. 3, pp. 219–231

    Google Scholar 

  25. L. P. Biró, S. Lazarescu, Ph. Lambin, P. A. Thiry, A. Fonseca, J. B. Nagy, and A. A. Lucas, Scanning tunneling microscope investigation of carbon nanotubes produced by catalytic decomposition of acetylene, Phys. Rev. B 56, 12 490–12498 (1977).

    Article  Google Scholar 

  26. L. C. Venema, V. Meunier, Ph. Lambin, and C. Dekker, Atomic structure of carbon nanotubes from scanning tunneling microscopy, Phys. Rev. B 61, 2991–2996 (2000).

    Article  CAS  Google Scholar 

  27. Ph. Kim, T. W. Odom, J. Huang, and Ch. M. Lieber, STM study of single-walled carbon nanotubes, Carbon 38, 1741–1744 (2000).

    Article  CAS  Google Scholar 

  28. F.-X. Zha, D. L. Carroll, R. Czerw, A. Loiseau, H. Pascard, W. Clauss, and S. Roth, Electronic effects in scanning tunneling microscopy of dendritic, Cr-filled carbon nanotubes, Phys. Rev. B 63, 165432–165437 (2001).

    Article  Google Scholar 

  29. Z. Zang and Ch. M. Lieber, Nanotube structure and electronic properties probed by scanning tunneling microscopy, Appl. Phys. Lett. 62, 2792–2794 (1993).

    Article  Google Scholar 

  30. Ch. H. Olk and J. P. Heremans, Scanning tunneling spectroscopy of carbon nanotubes, J. Mater. Res. 9, 259–262 (1994).

    CAS  Google Scholar 

  31. J. W. Mintmire, B. I. Dunlap, and C. T. White, Are fullerene tubules metallic? Phys. Rev. Lett. 68, 631–634 (1992).

    Article  CAS  Google Scholar 

  32. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Electronic structure of chiral graphene tubules, Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  CAS  Google Scholar 

  33. Y. K. Kwon and D. Tománek, Electronic and structural properties of multiwall carbon nanotubes, Phys. Rev. B 58, R16001–R16004 (1998).

    Article  CAS  Google Scholar 

  34. M. Ge and K. Sattler, Vapor-condensation generation and STM analysis of fullerene tubes, Science 260, 515–518 (1993).

    CAS  Google Scholar 

  35. D. Tománek and S. G. Louie, First-principles calculation of highly asymmetric structure in scanning-tunneling-microscopy images of graphite, Phys. Rev. B 37, 8327–8336 (1988).

    Article  Google Scholar 

  36. G. I. Márk, L. P. Biró, and Ph. Lambin, in Frontiers of Multifunctional Nanosystems edited by E. Buzaneva and P. Scharff, Kluwer Academic Publishers, Dordrecht (2002), p. 43.

    Google Scholar 

  37. J. Jxhie, K. Sattler, M. Ge, N. Verkateswaran, Giant and supergiant lattices on graphite, Phys Rev. B 4715835–15841 (1993).

    Article  Google Scholar 

  38. Ph. Lanbin, V. Meunier, and A. Rubio, Simulation of STM images and STS spectra of carbon nanotubes in: “Science and application of nanotubes” Ed. D. Tomanek and R. J. Endbody (Kluwer Academic/Plenum Publishers, New York, 2000) pp. 17–33.

    Google Scholar 

  39. A. Hassanien, A. Mrzel, M. Tokumoto, and D. Tománek, Imaging the interlayer interactions of multiwall carbon nanotubes using scanning tunneling microscopy and spectroscopy, Appl. Phys. Lett. 79, 4210–4212 (2001).

    Article  CAS  Google Scholar 

  40. D. L. Carroll, P. Redlich, P. M. Ajayan, J. C. Charlier, X. Blase, A. De Vita, and R. Car, Electronic Structure and Localized States at Carbon Nanotube Tips, Phys. Rev. Lett. 78, 2811–2814(1997)

    Article  CAS  Google Scholar 

  41. T. Tamura and M. Tsukada, Electronic states of the cap structure in the carbon nanotube, Phys. Rev. B 52, 6015–6026 (1995).

    Article  CAS  Google Scholar 

  42. M. S. Dresselhaus, in Carbon Filaments and Nanotubes: Common Origins, Different Applications? edited by L. P. Biró, C. A. Bernardo, G. G. Tibbetts and Ph. Lambin, Kluwer Academic Publishers, Dordrecht (2001), p. 11

    Google Scholar 

  43. L. P. Biró, R. Ehlich, R. Tellgmann, A. Gromov, N. Krawez, M. Tschaplyguine, M.-M. Pohl, Z. Véretsy, Z. E. Horváth, and E. E. B. Campbell, (1999) Growth of carbon nanotubes by fullerene decomposition in the presence of transition metals, Chem. Phys. Lett. 306, 155–162.

    Article  Google Scholar 

  44. L. P. Biró and G. I. Márk in Carbon Filaments and Nanotubes: Common Origins, Different Applications? edited by L. P. Biró, C. A. Bernardo, G. G. Tibbetts and Ph. Lambin, Kluwer Academic Publishers, Dordrecht (2001), p. 219

    Google Scholar 

  45. D. Tekleab, D. L. Carroll, G. G. Samsonidze, and B. I. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B 64, 035419–035424 (2001).

    Article  Google Scholar 

  46. D. Orlikowski, M. B. Nardelli, J. Bernholc, and Ch. Roland, Theoretical STM signatures and transport properties of native defects in carbon nanotubes, Phys. Rev. B 61, 14194–14203 (2000).

    Article  CAS  Google Scholar 

  47. J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Electronic structure of atomically resolved carbon nanotubes, Nature 391, 59–62(1998)

    Article  Google Scholar 

  48. T. W. Odom, J-L. Huang, Ph. Kim, and Ch. M. Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature 391, 62–64 (1998).

    Article  CAS  Google Scholar 

  49. W. Clauss, D. J. Bergeron, and A. T. Johnson, Atomic resolution STM imaging of a twisted single-wall carbon nanotube, Phys. Rev. B 85, R4266–R4269 (1998).

    Article  Google Scholar 

  50. N. Hamada, S. Sawada, and A. Oshiyama, New one-dimensional conductors: Graphitic microtubules, Phys. Rev. Lett. 68, 1579–1581 (1992).

    Article  CAS  Google Scholar 

  51. J.-C. Charlier and Ph. Lambin, Electronic structure of carbon nanotubes with chiral symmetry, Phys. Rev. B 57, R15037–R15039 (1998).

    Article  CAS  Google Scholar 

  52. C. T. White and J. W. Mintmire, Density of states reflects diameter in nanotubes, Nature 394 29–30 (1998).

    Article  CAS  Google Scholar 

  53. Ph. Kim, T. W. Odom, J-L. Huang, and Ch. M. Lieber, Electronic Density of States of Atomically Resolved Single-Walled Carbon Nanotubes: Van Hove Singularities and End States, Phys. Rev. Lett. 82, 1225–1228 (1999).

    Article  CAS  Google Scholar 

  54. E. D. Obraztsova, V. Yu. Yurov, V. M. Shevluga, R. E. Baranovsky, V. A. Nalimova, V. L. Kuznetsov, and V. I. Zaikovski, Structural investigations of close-packed single-wall carbon nanotube material, Nanostruct. Mater. 11, 295–306 (1999).

    Article  CAS  Google Scholar 

  55. A. Hassanien, M. Tokumoto, Y. Kumazawa. H. Kataura, Y. Maniwa, S. Suzuki, and Y. Achiba, Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature, Appl. Phys. Lett. 73 3839–3841 (1998).

    Article  CAS  Google Scholar 

  56. L. P. Biró, P. A. Thiry, Ph. Lambin, C. Journet, P. Bernier, and A. A. Lucas, Influence of tunneling voltage on the imaging of carbon nanotube rafts by scanning tunneling microscopy, Appl. Phys. Lett. 73, 3680–3682 (1998).

    Article  Google Scholar 

  57. L. C. Venema, J. W. G. Wildöer, H. L. J. Temminck Tuinstra, C. Dekker, A. G. Rinzler, and R. E. Smalley, Length control of individual carbon nanotubes by nanostructuring with a scanning tunneling microscope, Appl. Phys. Lett. 71, 2629–2631 (1977).

    Article  Google Scholar 

  58. T. W. Odom, J. L. Huang, Ph. Kim, and C. M. Lieber, Structure and Electronic Properties of Carbon Nanotubes, J. Phys. Chem. B 104, 2794–2809 (2000).

    Article  CAS  Google Scholar 

  59. T. W. Odom, J. L. Huang, and C. M. Lieber, STM studies of single-walled carbon nanotubes, J. Phys. Condens. Mat. 14, R145–R167 (2002).

    Article  CAS  Google Scholar 

  60. Ph. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes, Science 287, 1801–1804 (2000).

    Article  CAS  Google Scholar 

  61. J. Kong, N. R. Franklin, Ch. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Nanotube Molecular Wires as Chemical Sensors, Science 287, 622–625 (2000).

    Article  CAS  Google Scholar 

  62. I. Wirth, S. Eisebitt, G. Kann, and W. Eberhardt, Statistical analysis of the electronic structure of single-wall carbon nanotubes, Phys. Rev. B 61, 5719–5723 (2000).

    Article  CAS  Google Scholar 

  63. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Trigonal warping effect of carbon nanotubes, Phys. Rev. B 61, 2981–2990 (2000).

    Article  CAS  Google Scholar 

  64. A. Rubio, Spectroscopic properties and STM images of carbon nanotubes, Appl. Phys. A 68, 275–282 (1999).

    Article  CAS  Google Scholar 

  65. Y. Xue and S. Datta, Fermi-Level Alignment at Metal-Carbon Nanotube Interfaces: Application to Scanning Tunneling Spectroscopy, Phys. Rev. Lett. 83, 4844–4847 (1999).

    Article  CAS  Google Scholar 

  66. A. Kleiner and S. Eggert, Curvature, hybridization, and STM images of carbon nanotubes, Phys. Rev. B 64, 113402–113406 (2001).

    Article  Google Scholar 

  67. M. Ouyang, J-L. Huang, C. L. Cheung, and Ch. M. Lieber, Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes, Science 292, 702–705 (2001).

    Article  CAS  Google Scholar 

  68. V. Meunier and Ph. Lambin, Tight-Binding Computation of the STM Image of Carbon Nanotubes, Phys. Rev. Lett. 81, 5588–5591 (1999).

    Article  Google Scholar 

  69. Ph. Lambin, A. Loiseau, C. Culot, and L. P. Biró, Structure of carbon nanotubes probed by local and global probes, Carbon 40, 1635–1648 (2002).

    Article  CAS  Google Scholar 

  70. C. L. Kane and E. J. Mele, Broken symmetries in scanning tunneling images of carbon nanotubes, Phys. Rev. B 59, R12759–R12762 (1999).

    Article  CAS  Google Scholar 

  71. W. Clauss, D. J. Bergeron, M. Freitag, C. L. Kane, E. J. Mele, and A. T. Johnson, Electron backscattering on single-wall carbon nanotubes observed by scanning tunneling microscopy, Europhys. Lett. 47, 601–607 (1999).

    Article  CAS  Google Scholar 

  72. P. Lambin, G. I. Márk, V. Meunier, L. P. Biró, Computation of STM Images of Carbon Nanotubes, Int. J. Quant. Chem. 95, 493–503 (2003).

    Article  CAS  Google Scholar 

  73. Ph. Lambin and V. Meunier, in Carbon Filaments and Nanotubes: Common Origins, Different Applications? edited by L. P. Biró, C. A. Bernardo, G. G. Tibbetts and Ph. Lambin, Kluwer Academic Publishers, Dordrecht (2001), p. 233.

    Google Scholar 

  74. G. I. Márk, A. Koós, Z. Osváth, L. P. Biró, J. Gyulai, A. M. Benito, W. K. Maser, P. A. Thiry, and Ph. Lambin, Calculation of the charge spreading along a carbon nanotube seen in scanning tunnelling microscopy (STM), Diam. Rel. Mat. 11, 961–963 (2001).

    Article  Google Scholar 

  75. G. I. Márk, Ph. Lambin, and L. P. Biró, Calculation of axial charge spreading in carbon nanotubes and nanotube Y junctions during STM measurement, Phys. Rev B 70, 115423/1–10 (2004).

    Article  Google Scholar 

  76. A. L. Macky and H. Terrones, Diamond from graphite, Nature 352, 762–762 (1991).

    Article  Google Scholar 

  77. 77 J-C. Charlier, T. W. Ebbesen, and Ph. Lambin, Structural and electronic properties of pentagon-heptagon pair defects in carbon nanotubes, Phys. Rev B 53, 11108–11113 (1996).

    Article  CAS  Google Scholar 

  78. A. V. Krasheninnikov, K. Nordlund, M. Sirviö, E. Salonen, and J. Keinonen, Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes, Phys. Rev. B 63, 245405–245411 (2001).

    Article  Google Scholar 

  79. Z. Osváth, G. Vértesy, L. Tapasztó, F. Wéber, Z. E. Horváth, J. Gyulai, and L. P. Biró, Atomically resolved STM images of carbon nanotube defects produced by Ar irradiation. Phys. Rev B 72, 045429/1–6 (2005).

    Article  Google Scholar 

  80. Z. Osváth, A. A. Koós, Z. E. Horváth, J. Gyulai, A. M. Benito, M.T. Martínez, W. K. Maser, and L. P. Biró, Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM), Chem. Phys. Lett. 365, 338–342 (2002).

    Article  Google Scholar 

  81. L. P. Biró, R. Ehlich, Z. Osváth, A. Koós, Z. E. Horváth, J. Gyulai, and J. B. Nagy, From straight carbon nanotubes to Y-branched and coiled carbon nanotubes, Diam. Rel. Mat. 11, 1081–1085 (2002).

    Article  Google Scholar 

  82. Ph. Lambin, G. I. Márk and L. P. Biró, Structural and electronic properties of coiled and curled carbon nanotubes having a large number of pentagon-heptagon pairs, Phys. Rev B 67, 205413/1–9 (2003).

    Article  CAS  Google Scholar 

  83. D. J. Hornbaker, S.-J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, and A. Yazdani, Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures, Science 295, 828–831(2002).

    Article  CAS  Google Scholar 

  84. K. F. Kelly, I. W. Chiang, E. T. Mickelson, R. H. Hauge, J. L. Margrave, X. Wang, G. E. Scuseria, C. Radloff, N. J. Halas, Insight into the mechanism of sidewall functionalization of single-walled nanotubes: an STM study, Chem. Phys. Lett. 313, 445–450 (1999).

    Article  CAS  Google Scholar 

  85. Z. Kónya, I. Vesselenyi, K. Niesz, A. Demortier, A. Fonseca, J. Delhalle, Z. Mekhalif, J. B. Nagy, A. A. Koós, Z. Osváth, A. Kocsonya, L. P. Biró, and I. Kiricsi, Large scale production of short functionalized carbon nanotubes, Chem. Phys. Lett. 360, 429–435(2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

BIRÓ, L.P., LAMBIN, P. (2006). SCANNING TUNNELING MICROSCOPY AND SPECTROSCOPY OF CARBON NANOTUBES. In: Popov, V.N., Lambin, P. (eds) Carbon Nanotubes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 222. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4574-3_2

Download citation

Publish with us

Policies and ethics