Skip to main content

RAMAN SCATTERING OF CARBON NANOTUBES

  • Conference paper
Carbon Nanotubes

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 222))

Abstract

The present state of Raman scattering from carbon nanotubes is reviewed. In the first part of the presentation, the basic concepts of Raman scattering are elucidated with particular emphasis on the resonance scattering. The classical and the quantum-mechanical descriptions are presented and the basic experimental instrumentation and procedures are described. Special Raman techniques are discussed. Eventually, a short review on the electronic structure of single-wall carbon nanotubes (SWCNTs) is given. The second part of the presentation deals with Raman scattering from SWCNTs. The group theoretical analysis and the origin of the basic Raman lines are described. For the radial breathing mode, the observed quantum oscillations and the unusual strong Raman cross section are discussed. For the G-line, the resonance behavior and the response to doping are demonstrated and the calculated dependence of the line frequency on the tube diameter is summarized. For the D-line and for the G’-line, the dispersion is demonstrated and its origin from a triple resonance mechanism is described. Finally, the response from pristine and doped peapods is elucidated. In the third part, most recent results are reported from Raman spectroscopy of double-wall carbon nanotubes (DWCNTs). The unusual narrow lines with widths down to 0.4 cm-1 indicate clean room conditions for the growth process of the inner tubes. The (n,m) assignment of these lines and the high curvature effects are discussed. Results for DWCNTs, where the inner tubes are highly 13C-substituted, are reported with respect to Raman and NMR spectroscopy. Eventually, it is demonstrated that the RBM Raman lines of the inner tubes cluster into groups of up to 14 lines where each member of the cluster represents a pair of inner-outer tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M. Cardona, Light Scattering in Solids, Topics in Applied Physics Vol 8, (Springer, Berlin, Heidelberg, 1983)

    Google Scholar 

  2. H. Poulet, J.P. Mathieu, Vibrational Spectra and Symmetry of Crystals, (Gordon & Breach, Paris, 1970)

    Google Scholar 

  3. H. Kuzmany, Solid State Spectroscopy, (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  4. G. Turell, Infrared and Raman spectra of Crystals, (Academic, London, 1972).

    Google Scholar 

  5. D.A. Long, Raman Spectroscopy, (McGraw-Hill, New York 1977).

    Google Scholar 

  6. G. Abstreiter, in Light Scattering in Solids IV, M. Cardona, G. Güntherrodt (eds.) Topics in Appl. Phys. Vol 54 (Springer, Berlin, Heidelberg 1984).

    Google Scholar 

  7. M.L. Bansal, A.K. Sood, and M. Cardona, Solid State Commun. 78, 579–582 (1991).

    Article  CAS  Google Scholar 

  8. D. Olego and M. Cardona, Phys. Rev. B 23, 6592–6602 (1981).

    Article  CAS  Google Scholar 

  9. C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  10. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  11. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (London), 1998.

    Google Scholar 

  12. S. Reich, C. Thomsen, J. Maultsch, Carbon Nanotubes, (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  13. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, Synth. Met. 103, 2555–2558 (1999).

    Article  CAS  Google Scholar 

  14. R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B 51, 11176–11179(1995).

    Article  CAS  Google Scholar 

  15. H. Kuzmany, W. Plank, M. Hulman, Ch. Kramberger, A. Grüneis, Th. Pichler, H. Peterlik, H. Kataura and Y. Achiba, Eur. Phys. J. B 22, 307–320 (2001).

    Article  Google Scholar 

  16. A. Kukovecz, Ch. Kramberger, V. Georgakilas, M. Prato and H. Kuzmany, Eur. Phys. J. B 28, 223–230 (2002).

    Article  CAS  Google Scholar 

  17. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Phys. Rev. Lett. 93, 147406/1–4 (2004).

    CAS  Google Scholar 

  18. A. Jorio, R. Saito, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118/1–4 (2001)

    Article  Google Scholar 

  19. A. Grüneis Diploma work, University of Vienna 2001.

    Google Scholar 

  20. V. N. Popov, New J. Phys. 6, 17/1–17 (2004).

    Article  Google Scholar 

  21. O. Dubay, G. Kresse, H. Kuzmany, Phys. Rev. Lett. 88, 235506/1–4 (2002).

    Article  CAS  Google Scholar 

  22. R. Pfeiffer, 2004, unpublished.

    Google Scholar 

  23. J. L. Sauvajol, 2004, unpublished

    Google Scholar 

  24. H. Kuzmany, W. Plank, and M. Hulman, Adv. Solid State Phys. 40, 194 (2000).

    Google Scholar 

  25. B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323–329 (1998).

    Article  CAS  Google Scholar 

  26. R. Pfeiffer, H. Kuzmany, T. Pichler, H. Kataura, Y. Achiba, M. Melle-Franco, and F. Zerbetto, Phys. Rev. B 69, 035404/1–7 (2004)

    Article  CAS  Google Scholar 

  27. T. Pichler, H. Kuzmany, H. Kataura, and Y. Achiba, Phys. Rev. Lett. 87, 267401/1–4 (2001)

    Article  CAS  Google Scholar 

  28. S. Pekker, G. Oszlanyi, G. Faigel, Chem. Phys. Lett. 282, 435–438 (1998).

    Article  CAS  Google Scholar 

  29. B. W. Smith, and D. E. Luzzi, Chem. Phys. Lett. 321 169–172 (1999).

    Article  Google Scholar 

  30. Ch. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zólyomi, and J. Kürti, Phys. Rev. B 68, 235404/1–4 (2003).

    Article  CAS  Google Scholar 

  31. R. Pfeiffer, H. Kuzmany, F. Simon, S. N. Bokova, and E. Obraztsova, Phys. Rev. B 71, 155409/1–8 (2005).

    Article  CAS  Google Scholar 

  32. F. Simon, Ch. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zólyomi, J. Kürti, P. M. Singer, and H. Alloul, Phys. Rev. Lett. 95, 017401/1–4 (2005).

    Article  CAS  Google Scholar 

  33. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, C. Thomsen, Phys. Rev. Lett. 93, 177401/1–4 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

KUZMANY, H., HULMAN, M., PFEIFFER, R., SIMON, F. (2006). RAMAN SCATTERING OF CARBON NANOTUBES. In: Popov, V.N., Lambin, P. (eds) Carbon Nanotubes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 222. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4574-3_17

Download citation

Publish with us

Policies and ethics