Skip to main content

VIBRATIONAL AND RELATED PROPERTIES OF CARBON NANOTUBES

  • Conference paper
Carbon Nanotubes

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 222))

Abstract

The symmetry-adapted approach to the study of the vibrational and related properties of carbon nanotubes is presented. The usually very large number of carbon pairs in the unit cell of the nanotubes, that hinders most of the microscopic studies, is conveniently handled in this approach by using the screw symmetry of the nanotubes and a two-atom unit cell. This allows the systematic simulation of various properties (vibrational, mechanical, thermal, electronic, optical, dielectric, etc.) of all nanotubes of practical interest: The application of symmetry-adapted models to the study of some of these properties is illustrated in this review in two cases: a force-constant approach and a tight-binding approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carbon nanotubes: Synthesis, Structure, Properties, and Applications edited by M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer-Verlag, Berlin, 2001).

    Google Scholar 

  2. V. N. Popov, V. E. Van Doren, and M. Balkanski, Lattice dynamics of single-walled carbon nanotubes, Phys. Rev. B 59, 8355–8358 (1999).

    Article  CAS  Google Scholar 

  3. V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61, 3078–3084 (2000).

    Article  CAS  Google Scholar 

  4. O. E. Alon, Number of Raman-and infrared-active vibrations in single-walled carbon nanotubes, Phys. Rev. B 63, 201403/1–3 (2001).

    Article  CAS  Google Scholar 

  5. V. N. Popov and L. Henrard, Evidence for the existence of two breathinglike phonon modes in infinite bundles of single-walled carbon nanotubes, Phys. Rev. B 63, 233407–233410 (2001).

    Article  CAS  Google Scholar 

  6. L. Henrard, V. N. Popov, and A. Rubio, Influence of Packing on the Vibrational Properties of Infinite and Finite Bundles of Carbon Nanotubes, Phys. Rev. B 64, 205403/1–10 (2001).

    Article  CAS  Google Scholar 

  7. V. N. Popov and L. Henrard, Breathinglike phonon modes in multiwalled carbon nanotubes, Phys. Rev. B 65, 235415/1–6 (2002).

    CAS  Google Scholar 

  8. V. N. Popov, V. E. Van Doren, and M. Balkanski, Elastic properties of crystals of single-walled carbon nanotubes, Solid State Commun. 114, 395–399 (2000).

    Article  CAS  Google Scholar 

  9. J. Tersoff and R. S. Ruoff, Structural Properties of a Carbon-Nanotube Crystal, Phys. Rev. Lett. 73, 676–679 (1994).

    Article  CAS  Google Scholar 

  10. V. N. Popov, Low-temperature specific heat of nanotube systems, Phys. Rev. B 66, 153408/1–4 (2002).

    Article  CAS  Google Scholar 

  11. A. Mizel, L. X. Benedict, M. L. Cohen, S. G. Louie, A. Zettl, N. K. Budraa, and W. P. Beyermann, Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes, Phys. Rev. B 60, 3264–3270 (1999)

    Article  CAS  Google Scholar 

  12. J. Hone, B. Batlogg, Z. Benes, A. T. Johnson, and J. E. Fischer, Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes, Science 289, 1730–1733 (2000).

    Article  CAS  Google Scholar 

  13. J. C. Lasjaunias, K. Biljaković, Z. Benes, J. E. Fischer, and P. Monceau, Low-temperature specific heat of single-wall carbon nanotubes, Phys. Rev. B 65, 113409/1–4 (2002).

    Article  CAS  Google Scholar 

  14. V. N. Popov, Curvature effects on the structural, electronic and optical properties of isolated single-walled carbon nanotubes within a symmetry-adapted non-orthogonal tight-binding model, New J. Phys. 6, 17.1–17.17 (2004).

    Article  CAS  Google Scholar 

  15. V. N. Popov and L. Henrard, Comparative study of the optical properties of single-walled carbon nanotubes within orthogonal and non-orthogonal tight-binding models, Phys. Rev. B 70, 115407/1–12(2004).

    Article  CAS  Google Scholar 

  16. V. N. Popov (unpublished).

    Google Scholar 

  17. T. Izawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transition-metal carbide surfaces, Phys. Rev. B 42, 11469–11478 (1990).

    Article  Google Scholar 

  18. S. Siebentritt, R. Pues, K.-H. Rieder, A. M. Shikin, Surface phonon dispersion in graphite and in a lanthanum graphite intercalation compound, Phys. Rev. B 55, 7927–7934 (1997).

    Article  CAS  Google Scholar 

  19. J. Kürti, V. Zólyomi, M. Kertesz, and G. Sun, The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour, New J. Phys. 5, 125.1–125.21 (2003).

    Article  Google Scholar 

  20. R. Loudon, Theory of the first-order Raman effect in crystals, Proc. Roy. Soc. (London) 275, 218–232(1963).

    Article  CAS  Google Scholar 

  21. V. N. Popov, L. Henrard, and Ph. Lambin, Resonant Raman intensity of the radial breathing mode of single-walled carbon nanotubes within a non-orthogonal tight-binding model, Nano Letters 4, 1795–1799 (2004).

    Article  CAS  Google Scholar 

  22. V. N. Popov, L. Henrard, and Ph. Lambin, Electron-phonon and electron-photon interactions and the resonant Raman scattering from the radial-breathing mode of single-walled carbon nanotubes, submitted to Phys. Rev. B (2005).

    Google Scholar 

  23. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects, Phys. Rev. Lett. 93, 147406/1–4 (2004).

    CAS  Google Scholar 

  24. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, Chirality Distribution and Transition Energies of Carbon Nanotubes, Phys. Rev. Lett. 93, 177401/1–4 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

POPOV, V.N., LAMBIN, P. (2006). VIBRATIONAL AND RELATED PROPERTIES OF CARBON NANOTUBES. In: Popov, V.N., Lambin, P. (eds) Carbon Nanotubes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 222. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4574-3_16

Download citation

Publish with us

Policies and ethics