Skip to main content

MATRIX MODELS AND 2D STRING THEORY

  • Conference paper
Applications of Random Matrices in Physics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 221))

Abstract

String theory in two-dimensional spacetime illuminates two main threads of recent development in string theory: (1)Open/closed string duality, and (2)Tachyon condensation. In two dimensions, many aspects of these phenomena can be explored in a setting where exact calculations can be performed. These lectures review the basic aspects of this system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large n field theories, string theory and gravity,” Phys. Rept. 323(2000) 183–386, hep-th/9905111.

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Witten, “Anti-de sitter space, thermal phase transition, and con.nement in gauge theories,” Adv. Theor. Math. Phys. 2(1998) 505–532, hep-th/9803131.

    MATH  MathSciNet  Google Scholar 

  3. A. W. Peet, “Tasi lectures on black holes in string theory,” hep-th/0008241.

    Google Scholar 

  4. L. Fidkowski, V. Hubeny, M. Kleban, and S. Shenker, “The black hole singularity in ads/cft,” JHEP 02(2004) 014, hep-th/0306170.

    Article  MathSciNet  ADS  Google Scholar 

  5. A. W. Peet and J. Polchinski, “Uv/ir relations in ads dynamics,” Phys. Rev. D59(1999) 065011, hep-th/9809022.

    MathSciNet  ADS  Google Scholar 

  6. T. Banks, M. R. Douglas, G. T. Horowitz, and E. J. Martinec, “Ads dynamics from conformal field theory,” hep-th/9808016.

    Google Scholar 

  7. V. Balasubramanian, P. Kraus, A. E. Lawrence, and S. P. Trivedi, “Holographic probes of anti-de sitter space-times,” Phys. Rev. D59(1999) 104021, hep-th/9808017.

    MathSciNet  ADS  Google Scholar 

  8. I. R. Klebanov, “String theory in two-dimensions,” hep-th/9108019.

    Google Scholar 

  9. P. H. Ginsparg and G. W. Moore, “Lectures on 2-d gravity and 2-d string theory,” hep-th/9304011.

    Google Scholar 

  10. H. Dorn and H. J. Otto, “Two and three point functions in liouville theory,” Nucl. Phys. B429(1994) 375–388, hep-th/9403141.

    Article  MathSciNet  ADS  Google Scholar 

  11. A. B. Zamolodchikov and A. B. Zamolodchikov, “Structure constants and conformal bootstrap in liouville field theory,” Nucl. Phys. B477(1996) 577–605, hep-th/9506136.

    Article  MathSciNet  ADS  Google Scholar 

  12. J. Teschner, “On the liouville three point function,” Phys. Lett. B363(1995) 65–70, hep-th/9507109.

    ADS  Google Scholar 

  13. V. Fateev, A. B. Zamolodchikov, and A. B. Zamolodchikov, “Boundary liouville field theory. i: Boundary state and boundary two-point function,” hep-th/0001012.

    Google Scholar 

  14. J. Teschner, “Remarks on liouville theory with boundary,” hep-th/0009138.

    Google Scholar 

  15. A. B. Zamolodchikov and A. B. Zamolodchikov, “Liouville field theory on a pseudosphere,” hep-th/0101152.

    Google Scholar 

  16. J. Teschner, “Liouville theory revisited,” Class. Quant. Grav. 18(2001) R153-R222, hep-th/0104158.

    Google Scholar 

  17. Y. Nakayama, “Liouville field theory: A decade after the revolution,” Int. J. Mod. Phys. A19(2004) 2771–2930, hep-th/0402009.

    MathSciNet  ADS  Google Scholar 

  18. J. McGreevy and H. Verlinde, “Strings from tachyons: The c = 1 matrix reloaded,” JHEP 12(2003) 054, hep-th/0304224.

    Article  MathSciNet  ADS  Google Scholar 

  19. E. J. Martinec, “The annular report on non-critical string theory,” hep-th/0305148.

    Google Scholar 

  20. I. R. Klebanov, J. Maldacena, and N. Seiberg, “D-brane decay in two-dimensional string theory,” JHEP 07(2003) 045, hep-th/0305159.

    Article  MathSciNet  ADS  Google Scholar 

  21. T. Takayanagi and N. Toumbas, “A matrix model dual of type 0b string theory in two dimensions,” JHEP 07(2003) 064, hep-th/0307083.

    Article  MathSciNet  ADS  Google Scholar 

  22. M. R. Douglas, I. R. Klebanov, D. Kutasov, J. Maldacena, E. Martinec, and N. Seiberg, “A new hat for the c = 1 matrix model,” hep-th/0307195.

    Google Scholar 

  23. A. Sen, “Non-bps states and branes in string theory,” hep-th/9904207.

    Google Scholar 

  24. E. J. Martinec, “Defects, decay, and dissipated states,” hep-th/0210231.

    Google Scholar 

  25. M. B. Green, J. H. Schwarz, and E. Witten, “Supestring theory, vols. 1 and 2,”. Cambridge, UK: Univ. Pr. (1987) (Cambridge Monographs On Mathematical Physics).

    Google Scholar 

  26. J. Polchinski, “String theory. vols. 1 and 2,”. Cambridge, UK: Univ. Pr. (1998).

    Google Scholar 

  27. E. Braaten, T. Curtright, and C. B. Thorn, “An exact operator solution of the quantum liouville field theory,” Ann. Phys. 147(1983) 365.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. A. M. Polyakov, “Quantum geometry of bosonic strings,” Phys. Lett. B103(1981) 207–210.

    MathSciNet  ADS  Google Scholar 

  29. V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, “Fractal structure of 2d-quantum gravity,” Mod. Phys. Lett. A3(1988) 819.

    MathSciNet  ADS  Google Scholar 

  30. F. David, “Conformal field theories coupled to 2-d gravity in the conformal gauge,” Mod. Phys. Lett. A3(1988) 1651.

    ADS  Google Scholar 

  31. J. Distler and H. Kawai, “Conformal field theory and 2-d quantum gravity or who's afraid of joseph liouville?,” Nucl. Phys. B321(1989) 509.

    Article  MathSciNet  ADS  Google Scholar 

  32. J. Polchinski, “Critical behavior of random surfaces in one-dimension,” Nucl. Phys. B346(1990) 253–263.

    Article  MathSciNet  ADS  Google Scholar 

  33. E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, “Planar diagrams,” Commun. Math. Phys. 59(1978) 35.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. D. J. Gross and I. R. Klebanov, “Vortices and the nonsinglet sector of the c = 1 matrix model,” Nucl. Phys. B354(1991) 459–474.

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Boulatov and V. Kazakov, “One-dimensional string theory with vortices as the upside down matrix oscillator,” Int. J. Mod. Phys. A8(1993) 809–852, hep-th/0012228.

    MathSciNet  ADS  Google Scholar 

  36. S. R. Das and A. Jevicki, “String field theory and physical interpretation of d = 1 strings,” Mod. Phys. Lett. A5(1990) 1639–1650.

    MathSciNet  ADS  Google Scholar 

  37. J. Polchinski, “Classical limit of (1+1)-dimensional string theory,” Nucl. Phys. B362(1991) 125–140.

    Article  MathSciNet  ADS  Google Scholar 

  38. J. Zinn-Justin, “Perturbation series at large orders in quantum mechanics and field theories: Application to the problem of resummation,” Phys. Rept. 70(1981) 109.

    Article  MathSciNet  ADS  Google Scholar 

  39. S. H. Shenker, “The strength of nonperturbative effects in string theory,". Presented at the Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, France, May 28 – Jun 1, 1990.

    Google Scholar 

  40. V. Balasubramanian, M. Berkooz, A. Naqvi, and M. J. Strassler, “Giant gravitons in conformal field theory,” JHEP 04(2002) 034, hep-th/0107119.

    Article  MathSciNet  ADS  Google Scholar 

  41. G. W. Moore, M. R. Plesser, and S. Ramgoolam, “Exact s matrix for 2-d string theory,” Nucl. Phys. B377(1992) 143–190, hep-th/9111035.

    Article  MathSciNet  ADS  Google Scholar 

  42. G. W. Moore and R. Plesser, “Classical scattering in (1+1)-dimensional string theory,” Phys. Rev. D46(1992) 1730–1736, hep-th/9203060.

    MathSciNet  ADS  Google Scholar 

  43. E. Witten, “Ground ring of two-dimensional string theory,” Nucl. Phys. B373(1992) 187–213, hep-th/9108004.

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Sen, “Rolling tachyon boundary state, conserved charges and two dimensional string theory,” JHEP 05(2004) 076, hep-th/0402157.

    Article  ADS  Google Scholar 

  45. A. Sen, “Symmetries, conserved charges and (black) holes in two dimensional string theory,” hep-th/0408064.

    Google Scholar 

  46. G. W. Moore, “Double scaled field theory at c = 1," Nucl. Phys. B368(1992) 557–590.

    Article  ADS  Google Scholar 

  47. G. W. Moore, N. Seiberg, and M. Staudacher, “From loops to states in 2-d quantum gravity,” Nucl. Phys. B362(1991) 665–709.

    Article  MathSciNet  ADS  Google Scholar 

  48. G. W. Moore and N. Seiberg, “From loops to fields in 2-d quantum gravity,” Int. J. Mod. Phys. A7(1992) 2601–2634.

    MathSciNet  ADS  Google Scholar 

  49. M. Natsuume and J. Polchinski, “Gravitational scattering in the c = 1 matrix model,” Nucl. Phys. B424(1994) 137–154, hep-th/9402156.

    Article  MathSciNet  ADS  Google Scholar 

  50. P. Di Francesco and D. Kutasov, “Correlation functions in 2-d string theory,” Phys. Lett. B261(1991) 385–390.

    MathSciNet  ADS  Google Scholar 

  51. P. Di Francesco and D. Kutasov, “World sheet and space-time physics in two-dimensional (super)string theory,” Nucl. Phys. B375(1992) 119–172, hep-th/9109005.

    Article  MathSciNet  ADS  Google Scholar 

  52. M. Bershadsky and I. R. Klebanov, “Genus one path integral in two-dimensional quantum gravity,” Phys. Rev. Lett. 65(1990) 3088–3091.

    Article  ADS  Google Scholar 

  53. N. Sakai and Y. Tanii, “Compact boson coupled to two-dimensional gravity,” Int. J. Mod. Phys. A6(1991) 2743–2754.

    MathSciNet  ADS  Google Scholar 

  54. J. Callan, Curtis G., I. R. Klebanov, A. W. W. Ludwig, and J. M. Maldacena, “Exact solution of a boundary conformal field theory,” Nucl. Phys. B422(1994) 417–448, hep-th/9402113.

    Article  ADS  Google Scholar 

  55. D. Kutasov, K. Okuyama, J. Park, N. Seiberg, and D. Shih, “Annulus amplitudes and zz branes in minimal string theory,” JHEP 08(2004) 026, hep-th/0406030.

    Article  MathSciNet  ADS  Google Scholar 

  56. A. Dhar, G. Mandal, and S. R. Wadia, “Discrete state moduli of string theory from the c=1 matrix model,” Nucl. Phys. B454(1995) 541–560, hep-th/9507041.

    Article  MathSciNet  ADS  Google Scholar 

  57. D. Friedan, E. J. Martinec, and S. H. Shenker, “Conformal invariance, supersymmetry and string theory,” Nucl. Phys. B271(1986) 93.

    Article  MathSciNet  ADS  Google Scholar 

  58. T. Fukuda and K. Hosomichi, “Super liouville theory with boundary,” Nucl. Phys. B635(2002) 215–254, hep-th/0202032.

    Article  MathSciNet  ADS  Google Scholar 

  59. C. Ahn, C. Rim, and M. Stanishkov, “Exact one-point function of n = 1 super-liouville theory with boundary,” Nucl. Phys. B636(2002) 497–513, hep-th/0202043.

    MathSciNet  ADS  Google Scholar 

  60. M. R. Gaberdiel and A. Recknagel, “Conformal boundary states for free bosons and fermions,” JHEP 11(2001) 016, hep-th/0108238.

    Article  MathSciNet  ADS  Google Scholar 

  61. T. Takayanagi, “Notes on d-branes in 2d type 0 string theory,” JHEP 05(2004) 063, hep-th/0402196.

    Article  MathSciNet  ADS  Google Scholar 

  62. E. Witten, “D-branes and k-theory,” JHEP 12(1998) 019, hep-th/9810188.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. A. Sen, “Descent relations among bosonic d-branes,” Int. J. Mod. Phys. A14(1999) 4061–4078, hep-th/9902105.

    ADS  Google Scholar 

  64. J. A. Harvey and P. Kraus, “D-branes as unstable lumps in bosonic open string field theory,” JHEP 04(2000) 012, hep-th/0002117.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. J. A. Harvey, P. Kraus, F. Larsen, and E. J. Martinec, “D-branes and strings as non-commutative solitons,” JHEP 07(2000) 042, hep-th/0005031.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. A. Sen, “Rolling tachyon,” JHEP 04(2002) 048, hep-th/0203211.

    Article  ADS  Google Scholar 

  67. B. H. Lian and G. J. Zuckerman, “2-d gravity with c = 1 matter,” Phys. Lett. B266(1991) 21–28.

    MathSciNet  ADS  Google Scholar 

  68. P. Bouwknegt, J. G. McCarthy, and K. Pilch, “Brst analysis of physical states for 2-d gravity coupled to c <= 1 matter,” Commun. Math. Phys. 145(1992) 541–560.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. E. Witten and B. Zwiebach, “Algebraic structures and differential geometry in 2-d string theory,” Nucl. Phys. B377(1992) 55–112, hep-th/9201056.

    Article  MathSciNet  ADS  Google Scholar 

  70. T. Banks, “The tachyon potential in string theory,” Nucl. Phys. B361(1991) 166–172.

    Article  ADS  Google Scholar 

  71. A. A. Tseytlin, “On the tachyonic terms in the string effective action,” Phys. Lett. B264(1991) 311–318.

    MathSciNet  ADS  Google Scholar 

  72. E. Witten, “On string theory and black holes,” Phys. Rev. D44(1991) 314–324.

    MathSciNet  ADS  Google Scholar 

  73. G. Mandal, A. M. Sengupta, and S. R. Wadia, “Classical solutions of two-dimensional string theory,” Mod. Phys. Lett. A6(1991) 1685–1692.

    MathSciNet  ADS  Google Scholar 

  74. G. W. Gibbons and M. J. Perry, “The physics of 2-d stringy space-times,” Int. J. Mod. Phys. D1(1992) 335–354, hep-th/9204090.

    MathSciNet  ADS  Google Scholar 

  75. C. R. Nappi and A. Pasquinucci, “Thermodynamics of two-dimensional black holes,” Mod. Phys. Lett. A7(1992) 3337–3346, gr-qc/9208002.

    MathSciNet  ADS  Google Scholar 

  76. J. Teschner, “On structure constants and fusion rules in the sl(2,c)/su(2) wznw model,” Nucl. Phys. B546(1999) 390–422, hep-th/9712256.

    Article  MathSciNet  ADS  Google Scholar 

  77. A. Giveon and D. Kutasov, “Notes on ads(3)," Nucl. Phys. B621(2002) 303–336, hep-th/0106004.

    Article  MathSciNet  ADS  Google Scholar 

  78. V. Fateev, A. B. Zamolodchikov, and A. B. Zamolodchikov, “unpublished,".

    Google Scholar 

  79. G. T. Horowitz and J. Polchinski, “A correspondence principle for black holes and strings,” Phys. Rev. D55(1997) 6189–6197, hep-th/9612146.

    MathSciNet  ADS  Google Scholar 

  80. V. Kazakov, I. K. Kostov, and D. Kutasov, “A matrix model for the two-dimensional black hole,” Nucl. Phys. B622(2002) 141–188, hep-th/0101011.

    Article  MathSciNet  ADS  Google Scholar 

  81. S. Y. Alexandrov, V. A. Kazakov, and I. K. Kostov, “Time-dependent backgrounds of 2d string theory,” Nucl. Phys. B640(2002) 119–144, hep-th/0205079.

    Article  MathSciNet  ADS  Google Scholar 

  82. J. L. Karczmarek and A. Strominger, “Matrix cosmology,” JHEP 04(2004) 055, hep-th/0309138.

    Article  MathSciNet  ADS  Google Scholar 

  83. E. Martinec and K. Okuyama, “Scattered results in 2d string theory,” hep-th/0407136.

    Google Scholar 

  84. T. Tada, “(q,p) critical point from two matrix models,” Phys. Lett. B259(1991) 442–447.

    MathSciNet  ADS  Google Scholar 

  85. J. M. Daul, V. A. Kazakov, and I. K. Kostov, “Rational theories of 2-d gravity from the two matrix model,” Nucl. Phys. B409(1993) 311–338, hep-th/9303093.

    Article  MathSciNet  ADS  Google Scholar 

  86. I. K. Kostov, “Strings with discrete target space,” Nucl. Phys. B376(1992) 539–598, hep-th/9112059.

    Article  MathSciNet  ADS  Google Scholar 

  87. T. Okuda and S. Sugimoto, “Coupling of rolling tachyon to closed strings,” Nucl. Phys. B647(2002) 101–116, hep-th/0208196.

    Article  MathSciNet  ADS  Google Scholar 

  88. D. Gaiotto, N. Itzhaki, and L. Rastelli, “On the bcft description of holes in the c = 1 matrix model,” Phys. Lett. B575(2003) 111–114, hep-th/0307221.

    MathSciNet  ADS  Google Scholar 

  89. A. Adams, J. Polchinski, and E. Silverstein, “Don't panic! closed string tachyons in ale space-times,” JHEP 10(2001) 029, hep-th/0108075.

    Article  MathSciNet  ADS  Google Scholar 

  90. C. Vafa, “Mirror symmetry and closed string tachyon condensation,” hep-th/0111051.

    Google Scholar 

  91. J. A. Harvey, D. Kutasov, E. J. Martinec, and G. Moore, “Localized tachyons and rg flows,” hep-th/0111154.

    Google Scholar 

  92. J. R. David, M. Gutperle, M. Headrick, and S. Minwalla, “Closed string tachyon condensation on twisted circles,” JHEP 02(2002) 041, hep-th/0111212.

    Article  MathSciNet  ADS  Google Scholar 

  93. M. Headrick, S. Minwalla, and T. Takayanagi, “Closed string tachyon condensation: An overview,” Class. Quant. Grav. 21(2004) S1539-S1565, hep-th/0405064.

    Google Scholar 

  94. J. L. Karczmarek and A. Strominger, “Closed string tachyon condensation at c = 1," JHEP 05(2004) 062, hep-th/0403169.

    Article  MathSciNet  ADS  Google Scholar 

  95. J. L. Karczmarek, A. Maloney, and A. Strominger, “Hartle-hawking vacuum for c = 1 tachyon condensation,” hep-th/0405092.

    Google Scholar 

  96. S. R. Das, J. L. Davis, F. Larsen, and P. Mukhopadhyay, “Particle production in matrix cosmology,” Phys. Rev. D70(2004) 044017, hep-th/0403275.

    MathSciNet  ADS  Google Scholar 

  97. P. Mukhopadhyay, “On the problem of particle production in c = 1 matrix model,” JHEP 08(2004) 032, hep-th/0406029.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Martinec, E.J. (2006). MATRIX MODELS AND 2D STRING THEORY. In: Brézin, É., Kazakov, V., Serban, D., Wiegmann, P., Zabrodin, A. (eds) Applications of Random Matrices in Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 221. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4531-X_11

Download citation

Publish with us

Policies and ethics