Skip to main content

MATRIX MODELS OF MODULI SPACE

  • Conference paper
Applications of Random Matrices in Physics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 221))

  • 1931 Accesses

Abstract

We review matrix models corresponding to triangulations of the moduli space of Riemann surfaces: primarily the Kontsevich model that computes intersection numbers on moduli space, and the Penner model that computes the virtual Euler characteristic of moduli space. Generalisations of the former model describe noncritical strings with c < 1 matter, while the latter can be generalised to describe amplitudes of c = 1 strings at selfdual radius.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Kazakov, A. A. Migdal and I. K. Kostov, “Critical Properties Of Randomly Triangulated Planar Random Surfaces”, Phys. Lett. B 157(1985) 295.

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Brezin and V. A. Kazakov, “Exactly Solvable Field Theories Of Closed Strings”, Phys. Lett. B 236(1990) 144.

    Article  MathSciNet  ADS  Google Scholar 

  3. M. R. Douglas and S. H. Shenker, “Strings In Less Than One-Dimension”, Nucl. Phys. B 335(1990) 635.

    Article  MathSciNet  ADS  Google Scholar 

  4. D. J. Gross and A. A. Migdal, “Nonperturbative Two-Dimensional Quantum Gravity”, Phys. Rev. Lett. 64(1990) 127.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. T. Takayanagi and N. Toumbas, “A matrix model dual of type 0B string theory in two dimensions”, JHEP 0307(2003) 064 [arXiv:hep-th/0307083].

    Article  MathSciNet  ADS  Google Scholar 

  6. M. R. Douglas, I. R. Klebanov, D. Kutasov, J. Maldacena, E. Martinec and N. Seiberg, “A new hat for the c = 1 matrix model”, arXiv:hep-th/0307195.

    Google Scholar 

  7. M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function”, Commun. Math. Phys. 147(1992) 1.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. R. Penner, “Perturbative series and the moduli space of Riemann surfaces”, J. Diff. Geom. 27(1988) 35.

    MATH  MathSciNet  Google Scholar 

  9. E. Witten, “On the structure of the topological phase of two-dimensional gravity”, Nucl. Phys. B 340(1990) 281.

    Article  MathSciNet  ADS  Google Scholar 

  10. J. Distler and C. Vafa, “A critical matrix model at c = 1”, Mod. Phys. Lett. A 6(1991) 259.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. J. McGreevy and H. Verlinde, “Strings from tachyons: The c = 1 matrix reloaded”, arXiv:hep-th/0304224.

    Google Scholar 

  12. I. R. Klebanov, J. Maldacena and N. Seiberg, “D-brane decay in two-dimensional string theory”, JHEP 0307(2003) 045 [arXiv:hep-th/0305159].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Gaiotto and L. Rastelli, “A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model”, arXiv:hep-th/0312196.

    Google Scholar 

  14. V. Fateev, A. B. Zamolodchikov and A. B. Zamolodchikov, “Boundary Liouville .eld theory. I: Boundary state and boundary two-point function”, arXiv:hep-th/0001012.

    Google Scholar 

  15. J. Teschner, “Remarks on Liouville theory with boundary”, arXiv:hep-th/0009138.

    Google Scholar 

  16. A. B. Zamolodchikov and A. B. Zamolodchikov, “Liouville .eld theory on a pseudosphere”, arXiv:hep-th/0101152.

    Google Scholar 

  17. J. L. Harer and D. Zagier, “The Euler characteristic of the moduli space of curves”, Inv. Math. 85(1986) 457.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. J. L. Harer, “The cohomology of the moduli space of curves”, in “Theory of Moduli”, Lecture Notes in Mathematics, Springer-Verlag (1988), E. Sernesi (Ed.).

    Google Scholar 

  19. K. Strebel, “Quadratic Differentials”, Springer-Verlag (1984).

    Google Scholar 

  20. S. Mukhi, “Topological matrix models, Liouville matrix model and c = 1 string theory”, arXiv:hep-th/0310287.

    Google Scholar 

  21. D. Mumford, “Towards An Enumerative Geometry Of The Moduli Space Of Curves,” in Arithmetic And Geometry, eds. M. Artin and J. Tate (Birkhauser, 1985).

    Google Scholar 

  22. S. Morita, “Characteristic Classes of Surface Bundles,” Invent. Math. 90(1987) 551.

    Google Scholar 

  23. E. Miller, “The Homology Of The Mapping Class Group,” J. Diff. Geom. 24(1986) 1.

    Google Scholar 

  24. E. Witten, “Two-Dimensional Gravity And Intersection Theory On Moduli Space”, Surveys Diff. Geom. 1(1991) 243.

    MATH  MathSciNet  Google Scholar 

  25. E. Witten, “On the Kontsevich model and other models of two-dimensional gravity”, IASSNS-HEP-91–24

    Google Scholar 

  26. M. Adler and P. van Moerbeke, “A Matrix integral solution to two-dimensional W(p) gravity" Commun. Math. Phys. 147(1992) 25.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. S. Kharchev, A. Marshakov, A.Mironov, A. Morozov and A. Zabrodin, “Towards uni.ed theory of 2-d gravity”, Nucl. Phys. B 380(1992) 181 [arXiv:hep-th/9201013].

    Article  MathSciNet  ADS  Google Scholar 

  28. I. R. Klebanov, “String theory in two dimensions”, arXiv:hep-th/9108019.

    Google Scholar 

  29. C. Imbimbo and S. Mukhi, “The topological matrix model of c = 1 string”, Nucl. Phys. B 449(1995) 553 [arXiv:hep-th/9505127].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. R. Dijkgraaf, G. W. Moore and R. Plesser, “The partition function of 2-D string theory”, Nucl. Phys. B 394(1993) 356 [arXiv:hep-th/9208031].

    Article  MathSciNet  ADS  Google Scholar 

  31. S. Y. Alexandrov, V. A. Kazakov and I. K. Kostov, "2-D string theory as normal matrix model”, Nucl. Phys. B 667(2003) 90 [arXiv:hep-th/0302106].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. D. Ghoshal, S. Mukhi and S. Murthy, “Liouville D-branes in two-dimensional strings and open string .eld theory”, JHEP 0411(2004) 027 [arXiv:hep-th/0406106].

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Dijkgraaf and C. Vafa, “N = 1 supersymmetry, deconstruction, and bosonic gauge theories”, arXiv:hep-th/0302011.

    Google Scholar 

  34. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino and C. Vafa, “Topological strings and integrable hierarchies”, arXiv:hep-th/0312085.

    Google Scholar 

  35. M. Aganagic, H. Ooguri, N. Saulina and C. Vafa, “Black holes, q-deformed 2d Yang- Mills, and non-perturbative topological strings”, arXiv:hep-th/0411280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Mukhi, S. (2006). MATRIX MODELS OF MODULI SPACE. In: Brézin, É., Kazakov, V., Serban, D., Wiegmann, P., Zabrodin, A. (eds) Applications of Random Matrices in Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 221. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4531-X_10

Download citation

Publish with us

Policies and ethics