Skip to main content

Physiologic Effects of Hyperbaric Oxygen on Oxygen Transport and Tissue Oxygen Pressure

  • Chapter
Handbook on Hyperbaric Medicine

Abstract

The mechanisms of oxygen transport, the relationship between oxygen delivery and consumption and determinants of tissue oxygen tension are considered with a brief introduction to the measurement techniques currently available in the clinical setting. An overview of clinical research from the last decade to the present is given with regard to the various organs. Evaluating the effects of hyperoxia at the tissue and cellular level as well as monitoring and titration of oxygen dose will be a challenging field of research in the future

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Nunn, The Oxygen Cascade, in: Nunn’s Applied Respiratory Physiology, edited by J. F. Nunn (Butterworth-Heinemann Ltd. ISBN 0 7506 1336 X, 1993), pp 255–268.

    Google Scholar 

  2. L. Martin, What is meant by interpreting arterial blood gases, in: All you really need to know to interpret arterial blood gases, edited by L. Martin (Lippincott Williams & Wilkins, Baltimore, Maryland, 2nd edition. ISBN 0-683-30604-9, 1999), pp. 1–83.

    Google Scholar 

  3. I. Boerema, N. G. Meyne, and W. H. Brummelkamp, Life without blood, Arch. Chir. Neer. 11, 70–83 (1959).

    Google Scholar 

  4. S. Silbernagl, A. Despopoulos, Respiration tissulaire, hypoxie, in: Atlas de poche de physiologie, edited by S Silbernagl and A. Despopoulos (Médecine-Sciences Flammarion, 3rd edition, 2004), pp. 130–131.

    Google Scholar 

  5. R. Schlichtig, O2 Uptake, Critical O2 Delivery, and Tissue Wellness, in: Pathophysiologic Foundations of Critical Care, edited by M. R. Pinsky and J. F. Dhainaut (Williams & Wilkins, Baltimore, Maryland, ISBN 0-683-06888-1, 1993), pp. 119–139.

    Google Scholar 

  6. S. M. Cain, Peripheral oxygen uptake and delivery in health and disease, Clin. Chest Med. 4, 139–148 (1983).

    PubMed  CAS  Google Scholar 

  7. R. Schlichtig, D. J. Kramer, and M. R. Pinsky, Flow redistribution during progressive hemorrhage, J. Appl. Physiol. 70, 169–178 (1991).

    PubMed  CAS  Google Scholar 

  8. R. W. Samsel, D. P. Nelson, and W. M. Sanders, Effect of endotoxin on systemic and skeletal muscle O2 extraction, J. Appl. Physiol. 65, 1377–1382 (1988)

    PubMed  CAS  Google Scholar 

  9. D. P. Nelson, R. W. Samsel, L. D. H. Wood, and P. T. Schumacker, Pathological supply dependency of systemic and intestinal O2 uptake during endotoxemia, J. Appl. Physiol. 64, 2410–2419 (1988).

    PubMed  CAS  Google Scholar 

  10. K. Nagano, S. Gelman, D. A. Parks, and E. L. Bradley, Hepatic oxygen-supply-uptake relationship and metabolism during anesthesia in miniature pigs, Anesthesiology 72, 902–910 (1990).

    PubMed  CAS  Google Scholar 

  11. M. N. Smithies, B. Royston, K. Makita, K. Konieczko, and J. F. Nunn, Comparison of oxygen consumption measurements:indirect calorimetry versus the reversed Fick method, Crit. Care Med. 19, 1401 (1991).

    PubMed  CAS  Google Scholar 

  12. K. L. Svenson, B. A. Henrikson, H. G. Sonander, and O. Stenqvist, Metabolic gas exchange during aortocoronary bypass surgery using a double pump system and mechanical ventilation. A comparison between indirect calorimetry and invasive blood gas measurements using Fick’s principle, Acta Anaesthisiol. Scand. 35, 188–189 (1991).

    Google Scholar 

  13. P. J. Peyton and G. J. Robinson, Measured pulmonary oxygen consumption: difference between systemic oxygen uptake measured by the reverse Fick method and indirect calorimetry in cardiac surgery, Anesthesia 60(2), 146–150 (2005).

    Article  CAS  Google Scholar 

  14. L. K. Weaver and S. Howe, Normobaric measurement of arterial oxygen tension in subjects exposed to hyperbaric oxygen, Chest 102, 1175–1181 (1992).

    PubMed  CAS  Google Scholar 

  15. H. G. Welch and P. K. Pedersen, Hyperoxia and human performance: a brief review, Med. Sci. Sports Exercise 14, 253–262 (1982).

    CAS  Google Scholar 

  16. R. Lodato, Decreased oxygen consumption and cardiac output during normobaric hypoxia, J Appl Physiol 67, 1551–1559 (1989).

    PubMed  CAS  Google Scholar 

  17. K. Reinhart, F. Bloos, F. Konig, D. Bredle, and L. Hannemann, Reversible decrease of oxygen consumption by hyperoxia, Chest 99, 690–694 (1991).

    PubMed  CAS  Google Scholar 

  18. L. F. Johnson, J. R. Neville, and R. W. Bancroft, The effect of decreased barometric pressure on oxygen consumption, Aerosp Med 34, 97–100 (1963).

    Google Scholar 

  19. C. K. Chapler, S. M. Cain, and W. N. Stainsby, The effects of hyperoxia on oxygen uptake during acute anemia, Can. J. Physiol. Pharmacol. 62, 809–814 (1984).

    PubMed  CAS  Google Scholar 

  20. C. J. Lambertsen, R. H. Kough, D. Y. Cooper, G. L. Emmel, H. H. Loeschke, and C. F. Schmidt, Oxygen toxicity. Effects in man of oxygen inhalation at 1 and 3.5 atmospheres upon blood gas transport, cerebral circulation, and cerebral metabolism, J. Appl. Physiol. 5, 471–486 (1953).

    PubMed  CAS  Google Scholar 

  21. R. L. Hughes, R. T. Mathieu, D. Campbell, and P. G. Fitch, Systemic hypoxia and hyperoxia, and liver flow and oxygen consumption in the greyhound, Pfluegers Arch. 381, 151–157 (1979).

    Article  CAS  Google Scholar 

  22. M. A. Savitt, J.S. Rankin, J. R. Elberry, C. H. Owen, and E. M. Camporesi, Influence of hyperbaric oxygen on left ventriclular contractility, total coronary blood flow, and myocardial oxygen consumption in the conscious dog, Undersea Hyperb. Med. 21(2), 169–183 (1994).

    PubMed  CAS  Google Scholar 

  23. A. L. Webster, D. G. Syrotuik, G. J. Bell, R. L. Jones, Y. Bhambani, and M. Young, Exercise after acute hyperbaric oxygenation: is there an ergogenic effect?, Undersea Hyperb. Med. Fall 25(3), 153–159 (1998).

    PubMed  CAS  Google Scholar 

  24. R. P. Adams and H. G. Welch, Oxygen uptake, acid-base status, and performance with varied inspired oxygen fractions, J. Appl. Physiol. 49, 863–868 (1980).

    PubMed  CAS  Google Scholar 

  25. K. A. Stanek, F. J. Nagle, G. E. Bisgard, and W. C. Byrnes, Effect of hyperoxia on oxygen consumption on exercising ponies, J. Appl. Physiol. 46, 1115–1118 (1979).

    PubMed  CAS  Google Scholar 

  26. L. Kaiser, Limiting factor for aerobic muscle performance. The influence of varying oxygen pressure and temperature, Acta Physiol. Scand. (Suppl) 346, 1–96 (1970).

    Google Scholar 

  27. H. G. Welch, G. Bonde-Petersen, T. Graham, K. Klausen, and N. Secher, Effects of hyperoxia on leg blood flow and metabolism during exercise, J. Appl. Physiol. 42(3), 385–390 (1977).

    PubMed  CAS  Google Scholar 

  28. D. H. Horstman, M. Gleser; and J. Delehunt, Effects of altering oxygen delivery on VO2 of isolated, working muscle, Am. J. Physiol. 230, 327–334 (1976).

    PubMed  CAS  Google Scholar 

  29. R. S. Richardson, B. Grassi, T. B. Gavin, I. J. Haseler, K. Tagore, J. Roca, and P. D. Wagner, Evidence of O2-supply-dependent VO2 max in the exercise-trained human quadriceps, J. Appl. Physiol. 86(3), 1048–53 (1999).

    PubMed  CAS  Google Scholar 

  30. P. K. Pedersen, B. Kiens, and B. Saltin, Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise, Acta Physiol. Scand. 166(4), 309–318 (1999).

    Article  PubMed  CAS  Google Scholar 

  31. I. Savasi, M. K. Evans, G. J. Heigenhauser, and L. L. Spriet, Skeletal muscle metabolism is unaffected by DCA infusion and hyperoxia after onset of intense aerobic exercise, Am. J. Physiol. Endocrinol. Metab. 283(1), E 108–115 (2002).

    CAS  Google Scholar 

  32. H. Kohzuki, S. Sakata, Y. Ohga, H. Misawa, T. Kishi, and M. Takashi, Increase in O2 delivery with hyperoxia does not increase O2 uptake in tetanically contracting muscle, Jpn. J. Physiol. Feb 50(1), 167–169 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. B. A. Wilson and W. N. Stainsby, Effects of oxygen breathing on RQ, blood flow, and developed tension in situ dog muscle, Med. Sci. Sports 10, 167–170 (1978).

    PubMed  CAS  Google Scholar 

  34. M. Eynan, Y. Arieli, R. Arieli, and A. Bomzon, Hyperoxia may reduce energetic efficiency in the trained rat, Aviat. Space Environ. Med. 74(10), 1029–1033 (2003).

    PubMed  Google Scholar 

  35. A. Koch, D. Kramkowski, A. Rump, E. Bettinghausen, and H. Rieckert, First results with diving ergospirometry in the dive-chamber of the German Naval Medical Institute, Proceedings of the Annual Meeting of the European Underwater and Baromedical Society (Copenhagen), pp. 19–21 (2002).

    Google Scholar 

  36. S. J. Danek, J. P. Lynch, J. D. Weg, and D. R. Dantzker, The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome, Am. Rev. Respir. Dis. 122, 387–395 (1980).

    PubMed  CAS  Google Scholar 

  37. D. Bihari, M. Smithies, A. Gimson, and J. Tinker, The effects of vasodilation with prostacyclin on oxygen delivery and uptake in critically ill patients, N. Engl. J. Med.; 317, 397–403 (1987).

    Article  PubMed  CAS  Google Scholar 

  38. K. Reinhart, F. Bloos, F. Konig, D. Bredle, and L. Hannemann, Reversible decrease of oxygen consumption by hyperoxia, Chest 99(3), 690–694 (1991).

    PubMed  CAS  Google Scholar 

  39. D. Mathieu, Effets hémodynamiques et microcirculatoires de l’oxygénothérapie hyperbare, Thèse, Université de Lille II (1994).

    Google Scholar 

  40. M. H. Sukoff, Effects of hyperbaric oxygenation, J. Neurosurg 95(3), 544–546 (2001).

    PubMed  CAS  Google Scholar 

  41. D. Mathieu, R. Neviere, J. P. Millien, J. M. Coget, and F. Wattel, Non invasive assessment of vacoconstrictive effects of hyperoxigention in focal ischemia, in: Basic and Applied High Pressure Biology, edited by P. B. Bennett and R. E. Marquis. (University of Rochester Press, Rochester, 1993), pp. 375–381.

    Google Scholar 

  42. H. M. Amin, W. S. Kaniewski, D. Cohen, E. M. Camporesi, and T. S. Hakim, Effects of acute exposure to hyperbaric oxygen on the rheology and morphology of red blood cells in the rat, Microvasc. Res. 50(3), 417–428 (1995).

    Article  PubMed  CAS  Google Scholar 

  43. D. Mathieu, J. M. Coget, L. Vinckier, F. Saulnier, A. Durocher, and F. Wattel, Filtrabilité érythrocitaire et oxygénothérapie hyperbare, Med. Sup. Hyp. 3, 100–104 (1984).

    Google Scholar 

  44. W. F. Taylor, S. Chen, G. Barshtein, D. H. Hyde, and S. Yedgar, Enhanced aggregability of human blood cells by diving, Undersea Hyperb. Med. 25(3), 167–170 (1998).

    PubMed  CAS  Google Scholar 

  45. A. C. Kenmure, W. R. Murdoch, I. Hutton I, and A. J. Cameron, Hemodynamic effects of hyperbaric oxygen at 1 and 2 Ata pressure in healthy subjects, J. Appl. Physiol. 32(2), 223–226 (1972).

    PubMed  CAS  Google Scholar 

  46. F. L. Abel, J. E. Mc Namee, D. L. Cone, D. Clarke, and J. Tao, Effects of hyperbaric oxygen on ventricular performance, pulmonary blood volume, and systemic and pulmonary vascular resistance, Undersea Hyperb. Med. 27(2), 67–73 (2000).

    PubMed  CAS  Google Scholar 

  47. B. Neubauer, K. Tetzlaff, C. M. Staschen, and E. Bettinghausen, Cardiac output changes during hyperbaric hyperoxia, Int. Arch. Occup. Environ Health 74(2), 119–122 (2001).

    Article  PubMed  CAS  Google Scholar 

  48. F. Camus, Déterminants de l’Oxygénation tissulaire, in: Réamination et Médecine d’Urgence, edited by F. Camus (Expansion Scientifique Francaise, Paris, 1990), pp. 305–316.

    Google Scholar 

  49. A. S Popel, Theory of oxygen transport to tissue, Crit. Rev. Biomed. Eng. 17, 257–321 (1989).

    PubMed  CAS  Google Scholar 

  50. S. M. Tenney, A theoretical analysis of the relationship between venous blood and mean tissue oxygen pressures, Resp. Phys. 20, 283–296 (1974).

    Article  CAS  Google Scholar 

  51. G. Gutierrez, N. Lund, and F. Palizas, Rabbit skeletal muscle PO2 during hemodynamic sepsis, Chest 99, 224–229 (1991).

    PubMed  CAS  Google Scholar 

  52. A. Krogh, The anatomy and physiology of capillaries, Hatner, New York (1959)

    Google Scholar 

  53. J. B. West, in: Physiological basis of Medical Practice, edited by J. B. West (William and Wilkins, Baltimore, 12th ed., 1990), pp. 517–564.

    Google Scholar 

  54. C. R. Honing, J. L. Frierson, and C. N. Nelson, Oxygen transport and VO2 in resting muscle: significance for tissue capillary exchange, Am. J. Physiol. 220(2), 357–363 (1971).

    Google Scholar 

  55. E.M. Renkin, Regulation of the microcirculation, Microvasc. Res. 30, 251–263 (1985).

    Article  PubMed  CAS  Google Scholar 

  56. A. B. Fisher and H. J. Forman, Oxygen utilization and toxicity in the lungs, in: Handbook of physiology, The respiratory system, circulation and non-respiratory functions, edited by the American Physiological Society (Bethesda, 1985), pp. 231–254.

    Google Scholar 

  57. G. Gutierrez, C. Marini, A. L. Acero, and N. Lund, Skeletal muscle PO2 during hypoxemia and isovolemic anemia, J. Appl. Physiol. 68, 2047–2053 (1990).

    PubMed  CAS  Google Scholar 

  58. A. Van der Kleij, Invasive and non-invasive PO2 measurements in clinical practice, Clin. Hemorheology and Microcirculation 21, 263–266 (1999).

    Google Scholar 

  59. J. B. Dean, D. K. Mulkey, A. J. Garcia, R. W. Putnam, and R. A. Henderson, Neuronal sensitivity to hyperoxia, hypercapnia, and inert gases at hyperbaric pressures, J. Appl. Physiol., 95, 883–909 (2003).

    PubMed  CAS  Google Scholar 

  60. I. T. Demchenko, T. D. Oury, J. D. Crapo, and C. A. Piantadosi, Regulation of the brain’s vascular responses to Oxygen, Circ. Res. 91, 1031–1047 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. W. P. Daugherty, J. E. Levasseur, D. Sun, G. L. Rockswold, and M. R. Bullock, Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats, J. Neurosurg. 101(3), 499–504 (2004).

    Article  PubMed  Google Scholar 

  62. R. A. Van Hulst, J. J. Haitsma, J. Klein, and B. Lachmann, Oxygen tension under hyperbaric conditions in healthy pig brain, Clin. Physiol. Funct. Imaging 23(3), 143–148 (2003).

    Article  PubMed  Google Scholar 

  63. R. Mayer, M. Hamilton-Farrell, A. van der Kleij, J. Schmutz, G. Granstrom, Z. Sicko, Y. Melamed, U. M. Carl, K. A. Hartmann, E. Jansen, L. Ditri, and P. Sminia, Hyperbaric Oxygen Therapy and Radiotherapy, Strahlentherapie und Onkologie 181, 113–123 (2005).

    Article  PubMed  Google Scholar 

  64. W. Mueller-Klieser, P. Vaupel, and R. Manz, Tumour oxygenation under normobaric and hyperbaric conditions, Br. J. Radiol. 56, 559–564 (1983).

    Article  PubMed  CAS  Google Scholar 

  65. D. M. Brizel, S. Lin S, J. L. Johnson, J. Brooks, M. W. Dewhirst, and C. A. Piantadosi, The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation, Br. J. Cancer 72(5), 1120–1124 (1995).

    PubMed  CAS  Google Scholar 

  66. K. Korhonen, K. Kuttila K, and J. Niinikoski, Tissue gas tensions in patients with necrotizing fasciitis and healthy controls during treatment with hyperbaric oxygen: a clinical study, Eur. J Surg. 166, 530–534 (2000).

    Article  PubMed  CAS  Google Scholar 

  67. A. Siddiqui, J. Davidson, and T. Mustoe, Ischemic tissue oxygen capacitance after hyperbaric oxygen therapy: a new physiologic concept, Plast. Reconstr. Surg. 99, 148–155 (1997).

    PubMed  CAS  Google Scholar 

  68. M. B. Strauss, B. J. Bryant, and G. B. Hart, Transcutaneous oxygen measurements under hyperbaric oxygen conditions as a predictor for healing of problem wounds, Foot Ankle Int. 23(10), 933–937 (2002).

    PubMed  Google Scholar 

  69. C. E. Fife CE, C. Buyukcakir C, G. H. Otto, P. J. Sheffield, R. A. Warriner, T. L. Love, and J. Mader, The predictive value of transcutaneous oxygen tension measurement in diabetic lower extremity ulcers treated with hyperbaric oxygen therapy: a retrospective analysis of 1144 patients, Wound Repair Regen 10(4), 198–207 (2002).

    Article  PubMed  Google Scholar 

  70. D. Mathieu, R. Neviere, P. Pellerin, P. Patenotre, and F. Wattel, Pedicle musculucutaneous flap transplantation: prediction of final outcome by transcutaneous oxygen measurements in hyperbaric oxygen, Plast Reconstr Surg 91(2), 329–334 (1993).

    PubMed  CAS  Google Scholar 

  71. F. E. Wattel, D. Mathieu, and P. Fossati, Hyperbaric oxygen in the treatment of diabetic foot lesions —search for healing predictive factors, J. Hyperb. Med. 6, 263–268 (1991).

    Google Scholar 

  72. F. Wattel, D. Mathieu, J. M. Coget, and F. Billard, Hyperbaric oxygen therapy in chronic vascular wound management, Angiology 41(1), 49–65 (1990).

    Google Scholar 

  73. J. H. Niinikoski, Clinical hyperbaric oxygen therapy. Wound perfusion, and transcutaneous oximetry, World J. Surg. 28(3), 307–311 (2004).

    Article  PubMed  Google Scholar 

  74. D. Y. Yu, S. J. Cringle, and V. A. Alder, The response of rat vitreal oxygen tension to stepwise increases in inspired percentage oxygen, Invest. Opthalmol. Vis. Sci. 31(12), 2493–2499 (1990).

    CAS  Google Scholar 

  75. C. R. Honig, Effect of tachycardia on intracellular PO2 and reserves of O2 transport in subendocardium of mouse left ventricle, Adv. Esp. Med. Biol. 277, 395–402 (1990).

    CAS  Google Scholar 

  76. A. J. Van der Kleij, D. J. Bakker, M. Lubbers, and C. P. Henny, Skeletal muscle PO2 in anaerobic soft tissue infections during hyperbaric oxygen therapy, Adv. Exp. Med. Biol. 317, 125–129 (1992).

    PubMed  Google Scholar 

  77. D. K. Mulkey, R. A. Henderson, and J. B. Dean, Hyperbaric oxygen depolarizes solitary complex neurons in tissue slices of rat medulla oblongata, Adv. Exp. Med. Biol. 475, 465–476 (2000).

    Article  PubMed  CAS  Google Scholar 

  78. D.A. Skoog and D. M. West, Votammetry, in: Principles of Instrumental Analysis, edited by D. A. Skoog and D. M. West (Holt, Reinhard and Winston, Inc., 1971), pp. 553–598.

    Google Scholar 

  79. U. K. Franzeck, A. Bollinger A, R. Huch R, and A. Huch, Transcutaneous oxygen tension and capillary morphologic characteristics and density in patients with chronic venous incompetence, Circulation 70(5), 806–811 (1984).

    PubMed  CAS  Google Scholar 

  80. K. Korhonen, K. Kuttila, and J. Niinikoski, Subcutaneous tissue oxygen and carbon dioxide tensions during hyperbaric oxygenation: an experimental study in rats, Eur. J. Surg. 165, 885–890 (1999).

    Article  PubMed  CAS  Google Scholar 

  81. Elwell, Hebden (May 23, 2005); http://www.medphys.ucl.ac.uk

    Google Scholar 

  82. F. F. Jöbsis, Non-invasive infrared monitoring of cerebral and myocardial insufficiency and circulatory parameters, Science 198, 1264–1267 (1977).

    PubMed  Google Scholar 

  83. K. M. Scheufler, Tissue oxygenation and capacity to deliver O2 do the two go together?, Transfusion and Apheresis Science 31, 45–54 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Ratzenhofer-Komenda, B., Favory, R., Welslau, W., Smolle-Jüttner, F.M., Mathieu, D. (2006). Physiologic Effects of Hyperbaric Oxygen on Oxygen Transport and Tissue Oxygen Pressure. In: Mathieu, D. (eds) Handbook on Hyperbaric Medicine. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4448-8_5

Download citation

Publish with us

Policies and ethics