Skip to main content

TERAHERTZ IMAGING, MILLIMETER-WAVE RADAR

  • Conference paper
Advances in Sensing with Security Applications

Part of the book series: NATO Security Through Science Series ((NASTA,volume 2))

Abstract

The millimeter wave (MMW) band of frequencies extends from 30 GHz to 300 GHz, with some fuzziness on both ends of this spectrum. The terahertz (THz) band extends from about 200 GHz to about 30 THz, despite the fact that the lower frequencies in this range are not strictly 1012 Hz or higher. These bands are also variously called submillimeter, far-infrared, and near-millimeter. In recent years, there has been some degree of hype associated with the capabilities of systems operating in these bands. Sometimes exorbitant claims have been made relative to the ability of these systems to see through walls, detect buried structures, and detect cancer cells, for example. In this chapter we shall examine some of these clams and assess their validity. We shall find that MMW and THz systems can do some amazing things, some of them not related to the above claims, and that there is substantial promise of even more interesting results. In this chapter we begin by discussing these atmospheric limitations, since they permeate the whole technology of MMW, sub-MMW, and THz technology. We then discuss MMW and THz sources, detectors, optics, and systems in separate sections. Finally, we present some results obtained using sensors operating in these bands. Perhaps the most interesting of these results demonstrate the capability to image objects at resolutions as good as λ/100, where λ is wavelength. These measurements show the connection between this sensor technology and applications to security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. C. Allen and H. J. Liebe. “Tropospheric Absorption and Dispersion of Millimeter and Submillimeter Waves” IEEE Trans. Antennas Propagat., Vol. 31, pp. 221–223, January 1983.

    Google Scholar 

  2. J. H. Van Vleck and V. F. Weisskopf. “On the Shape of Collision-Broadened Lines”, Rev. Mod. Phys., Vol. 17, pp. 227–236, April-July 1945.

    Google Scholar 

  3. H. J. Liebe, T. Manabe, G. A. Hu.ord. “Millimeter-Wave Attenuation and Delay Rates Due to Fog/Cloud Conditions”, IEEE Trans. Antennas Propagat., Vol. 37, pp. 1617–1623, December 1989.

    Article  Google Scholar 

  4. H. J. Liebe and D. H. Layton. NTIA Report 87–224 National Telecommunications and Information Administration, Boulder, CO, 1987.

    Google Scholar 

  5. R. S. Lawrence and J. W. Strohbehn. “A Survey of Clear-Air Propagation Effects Relevant to Optical Communications”, Proc. IEEE, Vol. 58, pp. 1523– 1545, 1970.

    Article  Google Scholar 

  6. R. W. McMillan, R. A. Bohlander, G. R. Ochs, R. J. Hill, S. F. Cli.ord. “Millimeter Wave Atmospheric Turbulence Measurements: Preliminary Results and Instrumentation for Future Measurements”, Optical Engineering, Vol. 22, No. 1, pp. 32–39, January/February 1983.

    Google Scholar 

  7. R. J. Hill, R. A. Bohlander, S. F. Cli.ord, R. W. McMillan, J. T. Priestley, W. P. Schoenfeld. “Turbulence-Induced Millimeter-Wave Scintillation Compared with Micrometeorological Measurements”, IEEE Trans. Geosciences and Remote Sensing, Vol. 26, No. 3, pp. 330–342, May 1988.

    Google Scholar 

  8. G.F. Brand. “Development and Applications of Frequency Tunable, Submillimeter Wave Gyrotrons”, Int. J. Infrared and Millimeter Waves Vol. 16, pp. 879–887, 1995.

    Google Scholar 

  9. A.A. Tolkachev, B. A. Levitan, G. K. Solovjev, V. V. Veytsel, V. E. Farber. “A Megawatt Power Millimeter-Wave Phased-Array Radar”, IEEE AES Systems Magazine, pp. 25–31, July 2000.

    Google Scholar 

  10. A. F. Krupnov, M. Yu. Tretyakov, Yu A. Dryagin, and S. A. Volokhov. “Extension of the Range of Microwave Spectroscopy up to 1.3 THz”, J. Mol. Spetrosc., Vol. 170, 279–284 1995.

    Google Scholar 

  11. V. L. Vaks, V. V. Khodos, and E. V. Spivak. “A Nonstationary Microwave Spectrometer”, Review of Scienti.c Instruments, Vol. 70, Issue 8, pp. 3447– 3453, August 1999.

    Article  Google Scholar 

  12. A. F. Krupnov and A. V. Burenin. “New Methods in Submillimeter Microwave Spectroscopy”, Mol. Spectrosc: Mod. Research II, K. Narahar: Rao, ed. Academic Press, New York. (1976).

    Google Scholar 

  13. Introduction to Extended Interaction Oscillators, Data Sheet 3445 5M 11/75, Varian Associates of Canada, Ltd. (Now CPI), Georgetown, Ontario, Canada, 1975.

    Google Scholar 

  14. E. Alekseev and D. Pavlidis. “GaN-Based Gunn Diodes: Their Frequency and Power Performance and Experimental Considerations” www.eecs.umich.edu.

    Google Scholar 

  15. www.virginiadiodes.com

    Google Scholar 

  16. J. W. Dees. “Detection and Harmonic Generation in the Sub-Millimeter Wavelength Region”, Microwave J., Vol. 9, pp. 48–55, 1966.

    Google Scholar 

  17. K. M. Evenson, J. S. Wells, F. R. Petersen, B. L. Danielson, G. W. Day, R. L. Barger, and J. L. Hall, “Speed of Light from Direct Frequency and Wavelength Measurements of the Methane-Stabilized Laser”, Phys. Rev. Lett. Vol. 29, 1346–1349 1972.

    Article  Google Scholar 

  18. R. E. Forsythe, V. T. Brady, and G. T. Wrixon. “Development of a 183 GHz Subharmonic Mixer”, IEEE MTT-S International Microwave Symposium Digest, Orlando, FL, May 1978.

    Google Scholar 

  19. R. W. McMillan, C. W. Trussell, Jr., R. A. Bohlander, J. C. Butterworth, R. E. Forsythe. “An Experimental 225 GHz Pulsed Coherent Radar”, IEEE Trans. Microwave Theory and Techniques, Vol. 39, No. 3, pp. 555–562, March 1991.

    Article  Google Scholar 

  20. A. Vystavkin, D. Chouvaev, T. Claeson, D. Golubev, V., N. Kardashev, A., V. Kurt, L., M. Tarasov, A. Trubnikov, M. Willander. “Terahertz Andreev Reflection Based Normal Metal Hot-Electron Bolometer for the Cryogenic Telescope of the International Space Station”, The 10th International Symposium on Space Terahertz Technology, Proceedings, pp 372–389, University of Virginia, March 16–18, 1999.

    Google Scholar 

  21. “U3000 Uncooled Microbolometer Infrared Sensor”, Data Sheet. The Boeing Company, Anaheim, CA, 1998.

    Google Scholar 

  22. P. F. Goldsmith. Quasioptical Systems, IEEE Press, New York, 1997.

    Google Scholar 

  23. J. M. Schuchardt, J. A. Stratigos, J. A. Gagliano, D. O. Gallentine, J. L. King. “Dual Frequency Multi-Channel Millimeter Wave Radiometers for High Altitude Observation of Atmospheric Water Vapor”, 1979 MTT-S International Microwave Symposium Digest, pp. 540–542.

    Google Scholar 

  24. P. F. Goldsmith, C.-T. Hsieh, G. R. Huguenin, J. Kapitzky, and E. L. Moore. “Focal Plane Imaging Systems for Millimeter Wavelengths”, IEEE Trans. Microwave Theory and Techniques, Vol. 41, pp. 1664-1675, October 1993.

    Google Scholar 

  25. www.army-technology.com/projects/apache/

    Google Scholar 

  26. www.millivision.com

    Google Scholar 

  27. Private Communication, Thermotrex Corporation, San Diego, CA.

    Google Scholar 

  28. www.sae.org/aeromag/techupdate 12–99/05.htm

    Google Scholar 

  29. http://www.st.northropgrumman.com/velocium/

    Google Scholar 

  30. R. W. McMillan. “A Horizontal Atmospheric Temperature Sounder: Applications to Remote Sensing of Atmospheric Hazards”, Int. J. Infrared and Millimeter Waves, Vol. 14, No. 5, pp. 931–948, 1993.

    Article  Google Scholar 

  31. E. Brown. University of California at Los Angeles, Private Communication, 2002.

    Google Scholar 

  32. R. W. McMillan, Osborne Milton, Jr., M. C. Hetzler, R. S. Hyde, W. R. Owens. “Detection of Concealed Weapons Using Far-Infrared Bolometer Arrays”, Proceedings of the 25th International Conference on Infrared and Millimeter Waves, Beijing, China, 12–15 September 2000.

    Google Scholar 

  33. F. C. DeLucia. Ohio State University, Private Communication, 2004.

    Google Scholar 

  34. K. R. Armstrong and F. J. Low. “Far-Infrared Filters Utilizing Small Particle Scattering and Antireflection Coatings”, Applied Optics, Vol. 13, No. 2, pp. 425–430, February 1974.

    Article  Google Scholar 

  35. J. E. Peters and P. D. Ownby. “Far Infrared Transmission of Diamond Structure Semiconductor Single Crystals-Silicon and Germanium”, Optical Engineering, Vol. 38, No. 11, pp. 1924–1931, November 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

McMillan, R.W. (2006). TERAHERTZ IMAGING, MILLIMETER-WAVE RADAR. In: Byrnes, J., Ostheimer, G. (eds) Advances in Sensing with Security Applications. NATO Security Through Science Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4295-7_11

Download citation

Publish with us

Policies and ethics