Skip to main content

The Catalytic Manganese Cluster: Protein Ligation

  • Chapter
Photosystem II

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 22))

Summary

Water oxidation in Photosystem II (PS II) takes place under severe constraints. Because little surplus free energy is available, the midpoint potential of the (Mn)4 cluster must be tightly controlled to prevent it from increasing substantially as oxidizing equivalents are accumulated. In addition, the release of toxic, highly reactive intermediates of water oxidation must be minimized. To operate under these constraints, the reactivity of the (Mn)4-Ca2+-YZ complex is carefully controlled by its protein environment. This chapter describes the site-directed mutagenesis studies that have been undertaken to identify the amino acid residues that are responsible for this control. These residues include those that ligate the Mn and Ca2+ ions and those that influence the electron and proton transfer reactions of YZ and the (Mn)4-Ca2+ metal cluster. Most characterizations relied initially on non-invasive methods that were conducted in vivo. With improved methods for purifying PS II, characterizations increasingly involve newer developments in magnetic resonance, vibrational, and optical absorption spectroscopy. On the basis of the mutagenesis studies that are described in this chapter, possible ligands of the (Mn)4 cluster were proposed to include D1-Asp170, D1-His332, D1-Glu333, D1-His337 and D1-Asp342, plus the carboxyl-terminus of the D1 polypeptide at D1-Ala344. Possible ligands of the Ca2+ ion were proposed to include D1-Asp59, D1-Asp61 and D1-Asp342. In addition, D1-Glu189 was proposed to participate in a network of hydrogen bonds that facilitates electron transfer from the (Mn)4 cluster to YZ during the higher S state transitions and D1-His190 was proposed to serve as the proton acceptor for YZ. The recent 3.2 Å and 3.5 Å X-ray crystallographic structural models of PS II support some of these proposals, but conflict with others, most notably the ligation of Ca2+ and the roles of D1-Glu189 and, in the 3.5 Å structural model, the role of the carboxyl-terminus of the D1 polypeptide. Two surprising aspects of the structural models are that one Mn ion is ligated by both D1-Asp170 and D1-Glu333 and another is ligated by both D1-Glu189 and D1-His332. The properties of the D1-Asp170 and D1-Glu333 mutants differ markedly, as do the properties of the D1-Glu189 and D1-His332 mutants. The main points of agreement and disagreement between the mutagenesis studies and the recent X-ray crystallographic structural models are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry BA and Babcock GT (1987) Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 84: 7099–7103

    CAS  PubMed  Google Scholar 

  • Bernard MT, MacDonald GM, Nguyen AP, Debus RJ and Barry BA (1995) A difference infrared study of hydrogen bonding to the Z tyrosyl radical of Photosystem II. J Biol Chem 270: 1589–1594

    CAS  PubMed  Google Scholar 

  • Berthomieu C and Hienerwadel R (2005) Vibrational spectroscopy to study the properties of redox-active tyrosines in Photosystem II and other proteins. Biochim Biophys Acta 1707: 51–66

    CAS  PubMed  Google Scholar 

  • Berthomieu C, Hienerwadel R, Boussac A, Breton J and Diner BA (1998). Hydrogen-bonding of redox-active tyrosine Z of Photosystem II probed by FTIR difference spectroscopy. Biochemistry 37: 10547–10554

    Article  CAS  PubMed  Google Scholar 

  • Biesiadka J, Loll B, Kern J, Irrgang KD and Zouni A (2005) Crystal structure of Photosystem II at 3.2 Å resolution: A closer look at the Mn-cluster. Phys Chem Chem Phys 6: 4733–4736

    Google Scholar 

  • Blubaugh DJ and Cheniae GM (1992) Photoassembly of the Photosystem II manganese cluster. In: Murata N (ed) Research in Photosynthesis, Vol II, pp 361–364. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Boerner RJ, Nguyen AP, Barry BA and Debus RJ (1992) Evidence from directed mutagenesis that aspartate 170 of the D1 polypeptide influences the assembly of the manganese cluster in the photosynthetic water-splitting complex. Biochemistry 31: 6660–6672

    Article  CAS  PubMed  Google Scholar 

  • Boussac A., Sétif P and Rutherford AW (1992) Inhibition of tyrosine Z photooxidation after formation of the S3-state in Ca2+-depleted and Cldepleted Photosystem II. Biochemistry 31: 1224–1234

    CAS  PubMed  Google Scholar 

  • Bricker TM and Frankel LK (2002) The structure and function of CP47 and CP43 in Photosystem II. Photosynth Res 72: 131–146

    Article  CAS  PubMed  Google Scholar 

  • Bricker TM, Morvant J, Masri N, Sutton HM and Frankel, LK (1998) Isolation of a highly active Photosystem II preparation from Synechocystis 6803 using a histidine-tagged mutant of CP 47. Biochim Biophys Acta 1409: 50–57

    CAS  PubMed  Google Scholar 

  • Bricker TM, Young A, Frankel LK and Putnam-Evans C (2002) Introduction of the 305Arg → 305Ser mutation in the large extrinsic loop E of the CP43 protein of Synechocystis sp PCC 6803 leads to the loss of cytochrome c550 binding to Photosystem II. Biochim Biophys Acta 1556: 92–96

    CAS  PubMed  Google Scholar 

  • Brzezski P and Larsson G (2003) Redox-driven proton pumping by heme-copper oxidases. Biochim Biophys Acta 1605: 1–13

    Google Scholar 

  • Calhoun MW, Lemieux LJ, Thomas JW, Hill JJ, Chepuri Goswitz V, Alben JO and Gennis RB (1993) Spectroscopic characterization of mutants supports the assignment of histidine-419 as the axial ligand of heme o in the binuclear center of the cytochrome bo ubiquinol oxidase from Escherichia coli. Biochemistry 32: 13254–13261

    CAS  PubMed  Google Scholar 

  • Campbell KA, Force DA, Nixon PJ, Dole F, Diner BA and Britt RD (2000). Dual-mode EPR detects the initial intermediate in photoassembly of the Photosystem II Mn cluster: The influence of amino acid residue 170 of the D1 polypeptide on Mn coordination. J Am Chem Soc 122: 3754–3761

    CAS  Google Scholar 

  • Chen C, Kazimir J and Cheniae GM (1995) Calcium modulates the photoassembly of Photosystem II (Mn)4-clusters by preventing ligation of nonfunctional high-valency states of manganese. Biochemistry 34: 13511–13526

    CAS  PubMed  Google Scholar 

  • Choudhury K, Sundaramoorthy M, Hickman A, Yonetani T, Woehl E, Dunn MF and Poulos TL (1994) Role of the proximal ligand in peroxidase catalysis: Crystallographic, kinetic, and spectral studies of cytochrome c peroxidase proximal ligand mutants. J Biol Chem 269: 20239–20249

    CAS  PubMed  Google Scholar 

  • Chu H-A, Nguyen AP and Debus RJ (1994a) Site-Directed Photosystem II mutants with perturbed oxygen evolving properties: 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry 33: 6137–6149

    CAS  PubMed  Google Scholar 

  • Chu H-A, Nguyen AP and Debus RJ (1994b) Site-directed Photosystem II mutants with perturbed oxygen evolving properties. 2. Increased binding or photooxidation of manganese in the absence of the extrinsic 33-kDa polypeptide in vivo. Biochemistry 33: 6150–6157

    CAS  PubMed  Google Scholar 

  • Chu H-A, Nguyen AP and Debus RJ (1995a) Amino acid residues that influence the binding of manganese or calcium to Photosystem II. 1. The lumenal inter-helical domains of the D1 polypeptide. Biochemistry 34: 5839–5858

    CAS  PubMed  Google Scholar 

  • Chu H-A, Nguyen AP and Debus RJ (1995b) Amino acid residues that influence the binding of manganese or calcium to Photosystem II. 2. The Carboxyl-terminal domain of the D1 polypeptide. Biochemistry 34: 5859–5882

    CAS  PubMed  Google Scholar 

  • Chu H-A, Sackett H and Babcock GT (2000). Identification of a Mn-O-Mn cluster vibrational mode of the oxygen-evolving complex in Photosystem II by low-frequency FTIR spectros-copy. Biochemistry 39: 14371–14376

    Article  CAS  PubMed  Google Scholar 

  • Chu H-A, Debus RJ and Babcock GT (2001) D1-Asp170 is structurally coupled to the oxygen evolving complex in Photosystem II as revealed by light-induced Fourier transform infrared difference spectroscopy. Biochemistry 40: 2312–2316

    Article  CAS  PubMed  Google Scholar 

  • Chu H-A, Hillier W and Debus RJ (2004). Evidence that the C-terminus of the D1 polypeptide of Photosystem II is ligated to the manganese ion that undergoes oxidation during the S1 to S2 Transition: An isotope edited FTIR study. Biochemistry 43: 3152–3166

    CAS  PubMed  Google Scholar 

  • Clausen K, Winkler S, Hays A-MA, Hundelt M, Debus, RJ and Junge W (2001) Photosynthetic water oxidation in Synechocystis sp PCC6803: Mutations D1-E189K, R and Q are without influence on electron transfer at the donor side of Photosystem II. Biochim Biophys Acta 1506: 224–235

    CAS  PubMed  Google Scholar 

  • Crofts AR (2004) The cytochrome bc1 complex: Function in the context of structure. Annu Rev Physiol 66: 689–733

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102: 269–352

    CAS  PubMed  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503: 164–186

    CAS  PubMed  Google Scholar 

  • Debus RJ, Barry BA, Babcock GT and McIntosh L (1988a). Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci USA 85: 427–430

    CAS  PubMed  Google Scholar 

  • Debus RJ, Barry BA, Sithole I, Babcock GT and McIntosh L (1988b) Directed mutagenesis indicates that the donor to P680+ in Photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry 27: 9071–9074

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ, Nguyen AP and Conway AB (1990) Identification of ligands to manganese and calcium in Photosystem II by site-directed mutagenesis. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 829–832. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Debus RJ, Campbell KA, Pham DP, Hays A-MA and Britt RD (2000a) Glutamate 189 of the D1 polypeptide modulates the magnetic and redox properties of the manganese cluster and tyrosine YZ in Photosystem II. Biochemistry 39: 6275–6287

    CAS  PubMed  Google Scholar 

  • Debus RJ, Campbell KA, Peloquin JM, Pham DP and Britt RD (2000b) Histidine 332 of the D1 polypeptide modulates the magnetic and redox properties of the manganese cluster and tyrosine YZ in Photosystem II. Biochemistry 39: 470–478

    CAS  PubMed  Google Scholar 

  • Debus RJ, Campbell KA, Gregor W, Li Z-L, Burnap RL and Britt RD (2001) Does histidine 332 of the D1 polypeptide ligate the manganese cluster in Photosystem II? An electron spin echo envelope modulation study. Biochemistry 40: 3690–3699

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ, Aznar C, Campbell KA, Gregor W, Diner BA and Britt RD (2003) Does aspartate 170 of the D1 polypeptide ligate the manganese cluster in Photosystem II? An EPR and ESEEM study. Biochemistry 42: 10600–10608

    Article  CAS  PubMed  Google Scholar 

  • Debus RJ, Strickler MA, Walker LM and Hillier W (2005) No evidence from FTIR difference spectroscopy that aspartate-170 of the D1 polypeptide ligates a manganese ion that undergoes oxidation during the S0 to S1; S1 to S2, or S2 to S3 transtitions in Photosystem II. Biochemistry 44: 1367–1374

    Article  CAS  PubMed  Google Scholar 

  • DeRose VJ, Yachandra VK, McDermott AE, Britt RD, Sauer K and Klein MP (1991) Nitrogen ligation to manganese in the photosynthetic oxygen-evolving complex: Continuous-wave and pulsed EPR studies of Photosystem II particles containing 14N or 15N. Biochemistry 30: 1335–1341

    Article  CAS  PubMed  Google Scholar 

  • Diner BA (1998) Application of spectroscopic techniques to the study of Photosystem II mutations engineered in Synechocystis and Chlamydomonas. Methods Enzymol 297: 337–360

    CAS  Google Scholar 

  • Diner, BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of Photosystem II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503: 147–163

    CAS  PubMed  Google Scholar 

  • Diner BA and Nixon PJ (1992) The rate of reduction of oxidized redox-active tyrosine, Z+, by exogenous Mn2+ is slowed in a site-directed mutant, at Aspartate 170 of polypeptide D1 of Photosystem II, inactive for photosynthetic oxygen evolution. Biochim Biophys Acta 1101: 134–138

    CAS  Google Scholar 

  • Diner BA and Nixon PJ (1998) Evidence for D1-His190 as the proton acceptor implicated in the oxidation of redox-active tyrosine YZ of PS II. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 1177–1180, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Diner BA, Nixon PJ and Farchaus JW (1991) Site-directed mutagenesis of photosynthetic reaction centers. Curr Opin Struct Biol 1: 546–554

    Article  CAS  Google Scholar 

  • Edmonds BW and Luecke H (2004) Atomic resolution structures and the mechanism of ion pumping in bacteriorhodopsin. Front Biosci 9: 1556–1566

    CAS  PubMed  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata I (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Funk C, Wiklund R, Schröder WP and Jansson C (2001) D1’ centers are less efficient than normal Photosystem II centers. FEBS Lett 505: 113–117

    Article  CAS  PubMed  Google Scholar 

  • Gennis RB (2004) Coupled proton and electron transfer reactions in cytochrome oxidase. Front Biosci 9: 581–591

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Lutton TW and Seibert M (1998a) Effects of carboxyl amino acid modification on the properties of the high-affinity, manganese-binding site in Photosystem II. Biochemistry 37: 13559–13566

    CAS  PubMed  Google Scholar 

  • Ghirardi ML, Preston C and Seibert M (1998b) Use of a novel histidyl modifier to probe for residues on tris-treated Photosystem II membrane fragments that may bind functional manganese. Biochemistry 37: 13567–13574

    CAS  PubMed  Google Scholar 

  • Gilchrist ML, Jr (1996) Pulsed electron paramagnetic resonance investigation of photosynthetic oxygen evolution. PhD Dissertation. University of California at Davis

    Google Scholar 

  • Glatzel P, Bergmann U, Yano J, Visser H, Roblee JH, Gu W, de Groot FMF, Christou G, Pecoraro VL, Cramer SP and Yachandra VK (2004) The electronic structure of Mn in oxides, coordination complexes, and the oxygen-evolving complex of Photosystem II studied by resonant inelastic X-ray scattering. J Am Chem Soc 126: 9946–9959

    Article  CAS  PubMed  Google Scholar 

  • Hatano-Iwasaki A, Minagawa J, Inoue Y. and Takahashi Y (2001) Two functionally distinct manganese clusters formed by introducing a mutation in the carboxyl terminus of a Photosystem II reaction center polypeptide, D1, of the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta 1504: 299–310

    CAS  PubMed  Google Scholar 

  • Hays A-MA, Vassiliev IR, Golbeck JH and Debus RJ (1998) Role of D1-His190 in proton-coupled electron transfer reactions in Photosystem II: A chemical complementation study. Biochemistry 37: 11352–11365

    Article  CAS  PubMed  Google Scholar 

  • Hays A-MA, Vassiliev IR, Golbeck JH and Debus RJ (1999) Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in Mn-depleted Photosystem II. Biochemistry 38: 11851–11865

    Article  CAS  PubMed  Google Scholar 

  • Hundelt M, Hays A-MA, Debus RJ and Junge W (1998a) Oxygenic Photosystem II: The mutation D1-D61N in Synechocystis sp. PCC 6803 retards S-State transitions without affecting electron transfer from YZ to P680+. Biochemistry 37: 14450–14456

    Article  CAS  PubMed  Google Scholar 

  • Hundelt M, Hays A-MA, Debus RJ and Junge W (1998b). The mutation D1-D61N in PS II of Synechocystis: Retardation of ET from OEC → YZox and no effect on YZ → P680+. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 1387–1390. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Kimura Y and Ono T-A (2001) Chelator-induced disappearance of carboxylate stretching vibrational modes in S2/S1 FTIR spectrum in oxygen-evolving complex of Photosystem II. Biochemistry 40: 14061–14068

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Mizusawa N, Yamanari T, Ishii A and Ono T-A (2005) Structural changes of D1 C-terminal α-carboxylate during S-state cycling of photosynthetic oxygen evolution. J Biol Chem 280: 2078–2083

    CAS  PubMed  Google Scholar 

  • Knoepfle N, Bricker TM and Putnam-Evans, C (1999) Site-directed mutagenesis of basic arginine residues 305 and 342 in the CP 43 protein of Photosystem II affects oxygen-evolving activity in Synechocystis 6803. Biochemistry 38: 1582–1588

    Article  CAS  PubMed  Google Scholar 

  • Kramer DM, Roffey RA, Govindjee and Sayre RT (1994) The AT, thermoluminescence band from Chlamydomonas reinhardtii and the effects of mutagenesis of histidine residues on the donor side of the Photosystem II D1 polypeptide. Biochim Biophys Acta 1185: 228–237

    CAS  Google Scholar 

  • Kuhn MG and Vermaas WFJ (1993) Deletion mutations in a long hydrophilic loop in the Photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 23: 123–133

    CAS  PubMed  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66: 665–688

    Article  CAS  PubMed  Google Scholar 

  • Li Z-L and Burnap RL (2001). Mutations of arginine 64 within the putative Ca2+-binding lumenal interhelical a–b loop of the Photosystem II D1 protein disrupt binding of the manganese stabilizing protein and cytochrome c550 in Synechocystis sp PCC6803 Biochemistry 40: 10350–10359

    CAS  PubMed  Google Scholar 

  • Li Z-L and Burnap RL (2002) Mutations of basic arginine residue 334 in the D1 protein of Photosystem II lead to unusual S2 state properties in Synechocystis sp PCC 6803. Photosynth Res 72: 191–201

    Article  CAS  PubMed  Google Scholar 

  • Luecke H and Lanyi JK (2003) Structural clues to the mechanism of ion pumping in bacteriorhodopsin. Adv Protein Chem 63: 111–130

    Article  CAS  PubMed  Google Scholar 

  • Lundberg M and Siegbahn PEM (2004) Theoretical investigations of structure and mechanism of the oxygen-evolving complex in PS II. Phys Chem Chem Phys 6: 4772–4780

    Article  CAS  Google Scholar 

  • Magnuson A and Andréasson L-E (1997) Different manganese binding sites in Photosystem II probed by selective chemical modification of histidyl and carboxylic acid residues. Biochemistry 36: 3254–3261

    Article  CAS  PubMed  Google Scholar 

  • Mamedov F, Sayre RT and Styring S (1998) Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of Photosystem II. Biochemistry 37: 14245–14256

    Article  CAS  PubMed  Google Scholar 

  • McEvoy JP and Brudvig GW (2004) Structure-based mechanism of photosynthetic water oxidation. Phys Chem Chem Phys 6: 4754–4763

    Article  CAS  Google Scholar 

  • Messinger J (2004) Evaluation of different mechanistic proposals for water oxidation in photosynthesis on the basis of Mn4O2Ca structures for the catalytic site snd spectroscopic data. Phys Chem Chem Phys 6: 4764–4771

    Article  CAS  Google Scholar 

  • Metz JG, Nixon PJ, Rögner M, Brudvig GW and Diner BA (1989) Directed alteration of the D1 polypeptide of Photosystem II: Evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28: 6960–6969

    Article  CAS  PubMed  Google Scholar 

  • Michel H and Deisenhofer J (1988) Relevance of the photosynthetic reaction center from purple bacteria to the structure of Photosystem II. Biochemistry 27: 1–7

    Article  CAS  Google Scholar 

  • Mills DA and Ferguson-Miller S (2003) Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: Lessens from other proteins. FEBS Lett 545: 47–51

    Article  CAS  PubMed  Google Scholar 

  • Minagawa J and Crofts AR (1994) A robust protocol for site-directed mutagenesis of the D1 protein in Chlamydomonas reinhardtii: A PCR-spliced psbA gene in a plasmid conferring spectinomycin resistance was introduced into a psbA deletion strain. Photosynth Res 42: 121–131

    Article  CAS  Google Scholar 

  • Mizusawa N, Kimura Y, Ishii A, Yamanari T, Nakazawa S, Teramoto H and Ono T-A (2004a) Impact of replacement of D1 C-terminal alanine with glycine on structure and function of photosynthetic oxygen-evolving complex. J Biol Chem 279: 29622–29627

    Article  CAS  PubMed  Google Scholar 

  • Mizusawa N, Yamanari T, Kimura Y, Ishii A, Nakazawa S and Ono T-A (2004b) Changes in the functional and structural properties of the Mn cluster induced by replacing the side group of the C-terminus of the D1 protein of Photosystem II. Biochemistry 43: 14644–14652

    Article  CAS  PubMed  Google Scholar 

  • Nanba O and Satoh Ki (1987) Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome 6-559. Proc Natl Acad Sci USA 84: 109–112

    CAS  Google Scholar 

  • Nixon PJ and Diner BA (1992) Aspartate 170 of the Photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry 31: 942–948

    CAS  PubMed  Google Scholar 

  • Nixon PJ and Diner BA (1994) Analysis of water-oxidation mutants constructed in the cyanobacterium Synechocystis sp. PCC 6803. Biochem Soc Trans 22: 338–343

    CAS  PubMed  Google Scholar 

  • Nixon PJ, Chisholm DA and Diner BA (1992a) Isolation and functional analysis of random and site-directed mutants of Photosystem II. In: Shewry P and Gutteridge S (eds) Plant Protein Engineering, pp 93–141. Cambridge University Press, Cambridge

    Google Scholar 

  • Nixon PJ, Trost JT and Diner BA (1992b) Role of the carboxyl terminus of polypeptide D1 in the assembly of a functional water-oxidizing manganese cluster in Photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Assembly requires a free carboxyl group at C-terminal position 344. Biochemistry 31: 10859–10871

    CAS  PubMed  Google Scholar 

  • Noguchi T and Sugiura M (2002) FTIR detection of water reactions during the flash-induced S-state cycle of the photosynthetic water-oxidizing complex. Biochemistry 41: 15706–15712

    CAS  PubMed  Google Scholar 

  • Noguchi T, Ono T-A and Inoue Y (1995) A carboxylate ligand interacting with water in the oxygen-evolving center of Photosystem II as revealed by Fourier transform infrared spectroscopy. Biochim Biophys Acta 1232: 59–66

    Google Scholar 

  • Noguchi T, Inoue Y and Tang X-S (1999) Structure of a histidine ligand in the photosynthetic oxygen-evolving complex as studied by light-induced Fourier transform infrared spectroscopy. Biochemistry 38: 10187–10195

    CAS  PubMed  Google Scholar 

  • Okamura MY, Satoh Ki, Isaacson RA and Feher G (1987) Evidence of the primary charge separation in the D1/D2 complex of Photosystem II from spinach: EPR of the triplet state. In: Biggins J. (ed) Progress in Photosynthesis Research, Vol I, pp 379–381, Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Padock ML, Feher G and Okamura MY (2003) Proton transfer pathways and mechanism in bacterial reaction centers. FEBS Lett 555: 45–50

    Google Scholar 

  • Pakrasi HB and Vermaas WFJ (1992) Protein engineering of Photosystem II. In: Barber J. (ed) The Photosystems: Structure, Function and Molecular Biology, pp 231–257, Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  • Preston C and Seibert M (1991a) Protease treatments of Photosystem II membrane fragments reveal that there are four separate high-affinity Mn-binding sites. Biochemistry 30: 9625–9633

    CAS  PubMed  Google Scholar 

  • Preston C and Seibert M (1991b) The carboxyl modifier 1-ethyl-3-[3-(dimethylamino)propyl] carboddimide (EDC) inhibits half of the high-affinity Mn-binding site in Photosystem II membrane fragments. Biochemistry 30: 9615–9624

    CAS  PubMed  Google Scholar 

  • Pujols-Ayala I and Barry BA (2002) Histidine 190-D1 and glutamate 189-D1 provide structural stabilization in Photosystem II. Biochemistry 41: 11456–11465

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Dao L, Debus RJ and Burnap RL (1999). Impact of mutations within the putative Ca2+-binding lumenal interhelical a–b loop of the Photosystem II D1 protein on the kinetics of photoactivation and H2O-oxidation in Synechocystis sp. PCC 6803. Biochemistry 38: 6070–6081

    Article  CAS  PubMed  Google Scholar 

  • Randall DW (1997) Pulsed EPR studies of tyrosine radicals and manganese complexes: Insights into photosynthetic water oxidation. PhD Dissertation. University of California at Davis

    Google Scholar 

  • Reifler M.J., Chisholm DA, Wang J, Diner BA and Brudvig GW (1998) Engineering and rapid purification of histidine-tagged Photosystem II from Synechocystis PCC 6803. In: Garab G (ed) Photosynthesis, Mechanisms and Effects, Vol II, pp 1189–1192. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Roffey RA, Golbeck JH, Hille CR and Sayre RT (1991) Photosynthetic electron transport in genetically altered Photosystem II reaction centers of chloroplasts. Proc Natl Acad Sci USA 88: 9122–9126

    CAS  PubMed  Google Scholar 

  • Roffey RA, Kramer DM, Govindjee and Sayre RT (1994a) Lumenal side histidine mutations in the D1 protein of Photosystem II affect donor side electron transfer in Chlamydomonas reinhardtii. Biochim Biophys Acta 1185: 257–270

    CAS  PubMed  Google Scholar 

  • Roffey RA, van Wijk KJ, Sayre RT and Styring S (1994b) Spectroscopic characterization of tyrosine-Z in histidine 190 mutants of the D1 protein in Photosystem II (PS II) in Chlamydomonas reinhardtii: Implications for the structural model of the donor side of PS II. J Biol Chem 269: 5115–5121

    CAS  PubMed  Google Scholar 

  • Rosenberg C, Christian J, Bricker TM and Putnam-Evans C (1999) Site-directed mutagenesis of glutamate residues in the large extrinsic loop of the Photosystem II protein CP 43 affects oxygen-evolving activity and PS II assembly. Biochemistry 38: 15994–16000

    Article  CAS  PubMed  Google Scholar 

  • Satoh Ka and Katoh S (1985) A functional site of Ca2+ in the oxygen-evolving Photosystem II preparation from Synechococcus sp. FEBS Lett 190: 199–203

    Article  CAS  Google Scholar 

  • Seibert M, Tamura N and Inoue Y (1989) Lack of photoactivation capacity in Scenedesmus obliquus LF-1 results from loss of half the high-affinity manganese-binding site: Relationship to the unprocessed D1 protein. Biochim Biophys Acta 974: 185–191

    CAS  Google Scholar 

  • Smith JL, Zhang H, Yan J, Kurisu G and Cramer WA (2004) Cytochrome bc complexes: A common core of structure and function surrounded by diversity in the outlying provinces. Curr Opin Struct Biol 14: 432–439

    Article  CAS  PubMed  Google Scholar 

  • Steenhuis JJ, Hutchison RS and Barry BA (1999) Alterations in carboxylate ligation at the active site of Photosystem II. J Biol Chem 274: 14609–14616

    Article  CAS  PubMed  Google Scholar 

  • Strickler MA, Welker LM, Hillier W and Debus RJ (2005) Evidence from biosynthetically incorporated strontium and FTIR difference spectroscopy that the C-terminus of the D1 polypeptide of Photosystem II does not ligate calcium. Biochemistry 44: 8571–8577

    Article  CAS  PubMed  Google Scholar 

  • Svensson B, Minagawa J and Crofts AR (1998) Characterization of Photosystem II donor-side mutants in Chlamydomonas reinhardtii. In: Garab G (ed) Photosynthesis: Mechanisms and Effects, Vol II, pp 1451–1454. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Svensson B. Vass I, Cedergren E and Styring S (1990) Structure of donor side components in Photosystem II predicted by computer modelling. EMBO I 9: 2051–2059

    CAS  Google Scholar 

  • Szalai VA and Brudvig GW (1996) Reversible binding of nitric oxide to tyrosyl radicals in Photosystem II. Nitric oxide quenches formation of the S3 EPR signal species in acetate-inhibited Photosystem II. Biochemistry 35: 15080–15087

    CAS  PubMed  Google Scholar 

  • Takahashi M-A, Shiraishi T and Asada K (1988) COOH-terminal residues of D1 and the 44 kDa CPa-2 spinach Photosystem II core complex. FEBS Lett 240: 6–8

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Nakane H, Kojima H and Satoh Ki (1990) Chromatographic purification and determination of the carboxyl-terminal sequences of Photosystem II reaction center proteins, D1 and D2. Plant Cell Physiol 31: 273–280

    CAS  Google Scholar 

  • Tamura N, Ikeuchi M and Inoue Y (1989) Assignment of histidine residues in the D1 protein as possible ligands for functional manganese in the photosynthetic water-oxidizing complex. Biochim Biophys Acta 973: 281–289

    CAS  Google Scholar 

  • Tamura N, Noda K, Wakamatsu K, Kamachi H, Inoue H and Wada K(1997). Involvement of carboxyl groups of the PS II reaction center proteins in photoactivation of the apo-water-oxidizing complex. Plant Cell Physiol 38: 578–585

    CAS  Google Scholar 

  • Tang, X-S and Diner, BA (1994) Biochemical and spectroscopic characterization of a new oxygen-evolving Photosystem II core complex from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 33: 4594–4603

    CAS  PubMed  Google Scholar 

  • Tang X-S, Sivaraja M and Dismukes GC (1993a) Protein and substrate coordination to the manganese cluster in the photosynthetic water oxidizing complex: 15N and 1H ENDOR spectroscopy of the S2 state multiline signal in the thermophilic cyanobacterium Synechococcus elongatus. J Am Chem Soc 115: 2382–2389

    CAS  Google Scholar 

  • Tang X-S, Chisholm DA, Dismukes GC, Brudvig GW and Diner BA (1993b) Spectroscopic evidence from site-directed mutants of Synechocystis PCC 6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the Photosystem II reaction center. Biochemistry 32: 13742–13748

    Article  CAS  PubMed  Google Scholar 

  • Tang X-S, Diner BA, Larsen BS, Gilchrist ML, Jr, Lorigan GA and Britt RD (1994) Identification of histidine at the catalytic site of the photosynthetic oxygen-evolving complex. Proc Natl Acad Sci USA 91: 704–708

    CAS  PubMed  Google Scholar 

  • Tommos C and Babcock GT (2000) Proton and hydrogen currents in photosynthetic water oxidation. Biochim Biophys Acta 1458: 199–219

    CAS  PubMed  Google Scholar 

  • Trebst A (1986) The topology of the plastoquinone and herbicide binding peptides of Photosystem II in the thylakoid membrane. Z Naturforsch 41c: 240–245

    Google Scholar 

  • Vermaas WFJ, Rutherford AW and Hansson Ö (1988) Site-directed mutagenesis in Photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci USA 85: 8477–8481

    CAS  Google Scholar 

  • Vermaas WFJ, Charité J and Eggers B (1990) System for site-directed mutagenesis in the psbDI/C operon of Synechocystis sp. PCC 6803. In: Baltscheffsky M (ed) Current Research in Photosynthesis, Vol I, pp 231–238. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Vrettos JS and Brudvig GW (2002) Water oxidation chemistry of Photosystem II. Phil Trans R Soc Lond B 357: 1395–1405

    Article  CAS  Google Scholar 

  • Vrettos JS, Limburg J and Brudvig GW (2001) Mechanism of photosynthetic water oxidation: Combining biophysical studies of Photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503: 229–245

    CAS  PubMed  Google Scholar 

  • Whitelegge JP, Koo D, Diner BA, Domian I and Erickson JM (1995) Assembly of the Photosystem II oxygen-evolving complex is inhibited in psbA site-directed mutants of Chlamydomonas reinhardtii. J Biol Chem 270: 225–235

    CAS  PubMed  Google Scholar 

  • Wiklund R, Salih GF, Mäenpää P and Jansson C (2001) Engineering of the protein environment around the redox-active TyrZ in Photosystem II—the role of F186 and P1 62 in the D1 protein of Synechocystis 6803. Eur J Biochem 268: 5356–5364

    Article  CAS  PubMed  Google Scholar 

  • Wikström M (2005) Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta 1655: 241–47

    Google Scholar 

  • Wraight CA (2004) Proton and electron transfer in the acceptor quinone complex of photosynthetic reaction centers from Rhodobacter sphaeroides. Frontiers in Biosciences 9: 309–337

    CAS  Google Scholar 

  • Young A, McChargue M, Frankel LK, Bricker TM and Putnam-Evans C (2002) Alterations of the oxygen-evolving apparatus induced by a 305Arg → 305Ser mutation in the CP43 protein of Photosystem II from Synechocystis sp PCC 6803 under chloride-limiting conditions. Biochemistry 41: 15747–15753

    CAS  PubMed  Google Scholar 

  • Zimmermann J-L, Boussac A and Rutherford AW (1993) The manganese center of oxygen-evolving and Ca2+-depleted Photosystem II: A pulsed EPR spectroscopy study. Biochemistry 32: 4831–4841

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Debus, R.J. (2005). The Catalytic Manganese Cluster: Protein Ligation. In: Wydrzynski, T.J., Satoh, K., Freeman, J.A. (eds) Photosystem II. Advances in Photosynthesis and Respiration, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4254-X_12

Download citation

Publish with us

Policies and ethics