Skip to main content

Abstract

The global mean temperature increased by 0.6°C between 1990 to 2000, and is projected to increase by another 1.4 to over 5°C by 2100 (Houghton et al., 2001; McCarthy et al., 2001). Plants suffer the ups and downs of temperature of their environment, while animals often regulate their temperature, either by movement or metabolism. Therefore, global warming may affect plants more than animals and there are indications that plants experience substantial damage from high temperature stress. Estimates range up to a 17% decrease in crop yield for each degree Celsius increase in average growing season temperature (Lobell and Asner, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, M., Katiyar-Agarwal, S. and Grover, A. (2002). Plant Hsp100 proteins, structure, function and regulation. Plant Sci. 163, 397–405.

    Article  CAS  Google Scholar 

  • Ahmed, F. E., Hall, A. E. and Madore, M. A. (1993) Interactive effects of high temperature and elevated carbon dioxide concentration on cowpea [Vigna unguiculata (L.) Walp.]. Plant Cell Environ. 16, 835–842.

    CAS  Google Scholar 

  • Al-Khatib, K. and Paulsen, G.M. (1990). Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci. 30, 1127–1132.

    Google Scholar 

  • Alia, H., Hayashi, A., Sakamoto. and Murata, N. (1998). Enhancement of the tolerance of Arabidopsis to high temperatures by genetic engineering of the synthesis of glycinebetaine. Plant J. 16, 155-161.

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev, S.I., Feyziev, Y.M., Ahmed, A., Hayashi, H., Aliev, J.A., Klimov, V.V., Murata, N. and Carpentier, R. (1996). Stabilization of oxygen evolution and primary electron transport reactions in photosystem II against heat stress with glycinebetaine and sucrose. J. Photochem. Photobiol. 34, 149–157.

    CAS  Google Scholar 

  • Allakhverdiev, S.I., Hayashi, H., Nishiyama, Y., Ivanov, A.G., Aliev, J.A., Klimov, V.V., Murata, N. and Carpentier, R. (2003). Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J. Plant Physiol. 160, 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Allakhverdiev, S.I., Yruela, I., Picorel, R. and Klimov, V.V. (1997). Bicarbonate is an essential constituent of the water-oxidizing complex of photosystem II. Proc. Natl. Acad. Sci. USA. 94, 5050–5054.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J. F. (1992). Protein phosphorylation in regulation of photosynthesis. Biochim. Biophys. Acta. 1098, 275–335.

    PubMed  CAS  Google Scholar 

  • Aloni, B., Peet, M., Pharr, M. and Karni, L. (2001). The effect of high temperature and high atmospheric CO2 on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiol. Plant. 112, 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Alzhanova, D.V., Napuli, A.J., Creamer, R. and Dolja, V.V. (2001). Cell-to-cell movement and assembly of a plant closterovirus, roles for the capsid proteins and Hsp70 homolog. EMBO J. 20, 6997–7007.

    Article  PubMed  CAS  Google Scholar 

  • Ariizumi, T., Kishitani, S., Inatsugi, R., Nishida, I., Murata, N. and Toriyama, K. 2002. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings. Plant Cell Physiol. 43, 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Armond, P. A., Björkman, O. and Staehelin, H.A. (1980). Disociation of supramolecular complexes in chloroplast membranes. A manifestation of heat damage to the photosynthetic apparatus. Biochim. Biophys. Acta. 601, 433–442.

    PubMed  CAS  Google Scholar 

  • Barua, D., Downs, C.A. and Heckathorn, S. A. (2003). Variation in chloroplast small heat-shock protein function is a major determinant of variation in thermotolerance of photosynthetic electron transport among ecotypes of Chenopodium album. Funct. Plant Biol. 30, 1071–1079.

    Article  CAS  Google Scholar 

  • Basha, E., Lee, G. J., Breci, L. A., Hausrath, A. C., Buan, N. R., Giese, K. C. and Vierling, E. (2004). The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279, 7566–7575.

    PubMed  CAS  Google Scholar 

  • Bernacchi, C. J., Pimentel, C. and Long, S. P. (2003). In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26, 1419–1430.

    Article  CAS  Google Scholar 

  • Bernacchi, C. J., Portis, A. R., Nakano, H., Von Caemmerer, S. and Long, S. P. (2002). Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998.

    Article  PubMed  CAS  Google Scholar 

  • Bernacchi, C. J., Singsaas, E. L., Pimentel, C.A., Portis, Jr., R. and Long, S. P. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–259.

    CAS  Google Scholar 

  • Berry, J. A., and Björkman, O. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31, 491–543.

    Article  Google Scholar 

  • Berry, J. A. and Raison, J. K. (1981). Responses of macrophytes to temperature. Encyclopedia of Plant Physiology, New Series. Lange, O. L., P. S. Nobel, C. B. Osmond, and H. Ziegler (Eds.) Springer-Verlag pp. 277–338.

    Google Scholar 

  • Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W. and Stetter, K. O. (1997). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archea, extending the upper temperature limit for life to 113oC. Extremophiles. 1, 14–21.

    PubMed  Google Scholar 

  • Boston, R. S., Viitanen, P. V. and Vierling, E. (1996). Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32, 191–222.

    Article  PubMed  CAS  Google Scholar 

  • Bukhov, N. G., Boucher, N. and Carpentier, R. (1998). Loss of the precise control of photosynthesis and increased yield of non-radiative dissipation of excitation energy after mild heat treatment of barley leaves. Physiol. Plant. 104, 563–570.

    Article  CAS  Google Scholar 

  • Bukhov, N. G., Sabat, S. C. and Mohanty, P. (1990). Analysis of chlorophyll-a fluorescence changes in weak light in heat-treated Amaranthus chloroplasts. Photosynth. Res. 23, 81–87.

    Article  CAS  Google Scholar 

  • Bukhov, N. G., Samson, G. and Carpentier, R. (2000). Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. Steady-state rate. Photochem. Photobiol. 72, 351–357.

    Article  PubMed  CAS  Google Scholar 

  • Bukhov, N. G., Samson, G. and Carpentier, R. (2001). Non photosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. The pool size of stromal reductants. Photochem. Photobiol. 74, 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Bukhov, N. G., Wiese, C., Neimanis, S. and Heber, U. (1999). Heat sensitivity of chloroplasts and leaves, Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth. Res. 59, 81–93.

    Article  CAS  Google Scholar 

  • Cajánek, M., Štroch, M., Lachetová, K., Kalina, J. and Špunda, V. (1998). Characterization of the photosystem II inactivation of heat-stressed barley leaves as monitored by the various parameters of chlorophyll a fluorescence and delayed fluorescence. J. Photochem. Photobiol. 47, 39-45.

    Google Scholar 

  • Campbell, G. S., and Norman, J. M. (1998). An Introduction to Environmental Biophysics. Second Edition. Springer. 286 pp.

    Google Scholar 

  • Carlberg, I., Hansson, M., Kieselbach, T., Schröder, W. P., Andersson, B. and Vener, A. V. (2003). A novel plant protein undergoing light-induced phosphorylation and release from the photosynthetic thylakoid membranes. Proc. Natl. Acad. Sci. USA. 100, 757–762.

    Article  PubMed  CAS  Google Scholar 

  • Cheniae, G. M. and Martin, I. F. (1970). Sites of function of manganese within photosystem II. Roles in O2 evolution and system II. Biochim. Biophys. Acta. 197, 219–239.

    PubMed  CAS  Google Scholar 

  • Chow, W. S., Miller, C. and Anderson, J. M. (1991). Surface charges, the heterogeneous lateral distribution of the two photosystems, and thylakoid stacking. Biochim. Biophys. Acta. 1057, 69-77.

    CAS  Google Scholar 

  • Cornish, K., Radin, J. W., Turcotte, E. L., Lu, Z. and Zeiger, E. (1991). Enhanced photosynthesis and stomatal conductance of pima cotton (Gossypium barbadense L.) bred for increased yield. Plant Physiol. 97, 484–489.

    Google Scholar 

  • Cowling, S. A., and Sage, R. F. (1998). Interactive effects of low atmospheric CO2 and elevated temperature on growth, photosynthesis and respiration in Phaseolus vulgaris. Plant Cell Environ. 21, 427–435.

    Article  CAS  Google Scholar 

  • Crafts-Brandner, S. J. and Salvucci, M. E. (2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc. Natl. Acad. Sci. USA. 97, 13430–13435.

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner, S. J. and Salvucci, M. E. (2002). Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol. 129, 1773–1780.

    Article  PubMed  CAS  Google Scholar 

  • Cross, R. H., McKay, S. A. B., McHughen, G. and Bontham-Smith, P. C. 2003. Heat-stress effects on reproduction and seed set in Linum usitatissimum L. (flax). Plant Cell Environ. 26, 1013–1020.

    Article  Google Scholar 

  • Czarnecka-Verner, E., Yuan, C. X., Scharf, K. D. and Gurley, W. B. (2000). Plants contain a novel multi-member class of heat shock factors without transcriptional activator potential. Plant Molecular Biology. 43, 459–471.

    Article  PubMed  CAS  Google Scholar 

  • Das, K. P. and Surewicz, W. K. (1995). Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 369, 321–325.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W. W. III (1992). Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626.

    Article  CAS  Google Scholar 

  • Depège, N., Bellafiore, S. and Rochaix, J. D. (2003). Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science. 299, 1572–1575.

    PubMed  Google Scholar 

  • Downs, C. A., Coleman, J. S. andHeckathorn, S. A. (1999). The chloroplast 22-Ku heat-shock protein, A lumenal protein that associates with the oxygen evolving complex and protects photosystem II during heat stress. J. Plant Physiol. 155, 477–487.

    CAS  Google Scholar 

  • Ducruet, J. M. (1999). Relation between the heat-induced increase of F-0 fluorescence and a shift in the electronic equilibrium at the acceptor side of photosystem 2. Photosynthetica. 37, 335–338.

    Article  CAS  Google Scholar 

  • Ducruet, J. M. and Lemoine, Y. (1985). Increased Heat Sensitivity of the Photosynthetic Apparatus in Triazine-Resistant Biotypes from Different Plant-Species. Plant Cell Physiol. 26, 419–429.

    CAS  Google Scholar 

  • Ducruet, J. M. and Ort, D. R. (1988). Enhanced Susceptibility of Photosynthesis to High Leaf Temperature in Triazine-Resistant Solanum-Nigrum l Evidence for Photosystem-Ii D1-Protein Site of Action. Plant Science. 56, 39–48.

    Article  CAS  Google Scholar 

  • Egorova, E. A. and Bukhov, N. G. (2002). Effects of elevated temperatures on the activity of alternative pathways of photosynthetic electron transport in intact barley and maize leaves. Russ. J. Plant Physiol. 49, 575–584.

    CAS  Google Scholar 

  • Egorova, E. A., Bukhov, N. G., Heber, U., Samson, G. and Carpentier, R. (2003). Effect of the pool size of stromal reductants on the alternative pathway of electron transfer to photosystem I in chloroplasts of intact leaves. Russ. J. Plant Physiol. 50, 431–440.

    Article  CAS  Google Scholar 

  • Emmett, J. M. and Walker, D. A. (1969). Thermal uncoupling in chloroplasts. Biochim. Biophys. Acta. 180, 424–425.

    PubMed  CAS  Google Scholar 

  • Emmett, J. M. and Walker, D. A. (1973). Thermal uncoupling in chloroplasts. Inhibition of photophosphorylation without depression of light-induced pH change. Arch. Biochem. Biophys. 157, 106–113.

    Article  PubMed  CAS  Google Scholar 

  • Enami, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H. and Katoh, S. (1994a). Is the primary cause of thermal inactivation of oxygen evolution in spinach PSII membranes release of the extrinsic 33 kDa protein or Mn? Biochim. Biophys. Acta. 1186, 52–58.

    CAS  Google Scholar 

  • Enami, I., Tomo, T., Kitamura, M. and Katoh, S. (1994b). Immobilization of the 3 extrinsic proteins in spinach oxygen-evolving photosystem-II membranes - Roles of the proteins in stabilization of binding of Mn and Ca2+. Biochim. Biophys. Acta. 1185, 75–80.

    CAS  Google Scholar 

  • Faria, T., Wilkins, D., Besford, R. T., Vaz, M., Pereira, J. S. and Chaves, M. M. (1996). Growth at elevated CO2 leads to down-regulation of photosynthesis and altered response to high temperature in Quercus suber L seedlings. J. Exp. Bot. 47, 1755–1761.

    CAS  Google Scholar 

  • Farquhar, G. D., Von Caemmerer, S. and Berry, J. A. (1980). A biochemical model of photosynthetic CO2assimilation in leaves of C3 species. Planta 149, 78–90.

    Article  CAS  Google Scholar 

  • Feldman, N. L. (1962). The influence of sugars on the cell stability of some higher plants to heating and high hydrostatic pressure. Citologija. 4, 633–643.

    Google Scholar 

  • Feller, U., Crafts-Brandner, S. J. and Salvucci, M. E. (1998). Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol. 116, 539–546.

    Article  PubMed  CAS  Google Scholar 

  • Glover, J. R. and Lindquist, S. (1998). Hspl04, Hsp70, and Hsp40, A novel chaperone system that rescues previously aggregated proteins. Cell. 94, 73–82.

    Article  PubMed  CAS  Google Scholar 

  • Gombos, Z., Wada, H., Hideg, E. and Murata, N. (1994). The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. Plant Physiol. 104, 563–567.

    PubMed  CAS  Google Scholar 

  • Gorham, J. (1995). Betaines in higher plants-biosynthesis and role in stress metabolism. In, Amino acids and their derivatives in higher plants. Wallsgrove, R. M. (Ed.) Cambridge University Press, Cambridge, UK. pp. 171–203.

    Google Scholar 

  • Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P. (1983). Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. FEBS Lett. 153, 47–52.

    Article  CAS  Google Scholar 

  • Gounaris, K., Brain, A. P. R., Quinn, P. J. and Williams, W. P. (1984). Structural reorganization of chloroplast thylakoid membranes in response to heat stress. Biochim. Biophys. Acta. 766, 198-208.

    CAS  Google Scholar 

  • Guilioni, L., Wéry, J. and Lecoeur, J. (2003). High temperature and water deficit may reduce seed number in field pea purely by decreasing plant growth rate. Funct. Plant Biol. 30, 1151–1164.

    Article  Google Scholar 

  • Hamerlynck, E. P., Huxman, T. E., Loik, M. E. and Smith, S. D. (2000). Effects of extreme high temperature, drought and elevated CO2on photosynthesis of the Mojave Desert evergreen shrub, Larrea tridentata. Plant Ecol. 148, 183–193.

    Article  Google Scholar 

  • Hammer, M. F., Markwell, J. and Sarath, G. (1997). Purification of a protein phosphatase from chloroplast stroma capable of dephosphorylating the light-harvesting complex-II. Plant Physiol. 113, 227–233.

    Article  PubMed  CAS  Google Scholar 

  • Haney, P. J., Stees, M. and Konisky, J. (1999). Analysis of thermal stabilizing interactions in mesophilic and thermophilic adenylate kinases from the genus Methanococcus. J. Biol. Chem. 274, 28453–28458.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, D. T., Swanson, S., Graham, L. E. and Sharkey, T. D. (1999). Evolutionary significance of isoprene emission from mosses. Am. J. Bot. 86, 634–639.

    PubMed  CAS  Google Scholar 

  • Hansson, M. and Vener, A. V. (2003). Identification of three previously unknown in vivo protein phosphorylation sites in thylakoid membranes of Arabidopsis thaliana. Mol. Cell. Proteom. 2, 550–559.

    CAS  Google Scholar 

  • Harrison, M. A. and Allen, J. F. (1991). Light-dependent phosphorylation of Photosystem II polypeptides maintains electron transport at high light intensity, Separation from effects of phosphorylation of LHC-II. Biochim. Biophys. Acta. 1058, 289–296.

    CAS  Google Scholar 

  • Havaux, M. (1996). Short-term responses of photosystem I to heat stress - Induction of a PS II-independent electron transport through PS I fed by stromal components. Photosynth. Res. 47, 85–97.

    Article  CAS  Google Scholar 

  • Havaux, M. (1989). Comparison of atrazine-resistant and -susceptible biotypes of Senecio vulgaris L., effects of high and low temperatures on the in vivo photosynthetic electron transfer in intact leaves. J. Exp. Bot. 40, 849–854.

    CAS  Google Scholar 

  • Havaux, M., Greppin, H. and Strasser, R. J. (1991). Functioning of photosytems I and II in pea leaves exposed to heat stress in the presence or absence of light. Planta. 186, 88–98.

    Article  CAS  Google Scholar 

  • Havaux, M. and Tardy, F. (1996). Temperature-dependent adjustment of the thermal stability of photosystem II in vivo, Possible involvement of xanthophyll-cycle pigments. Planta. 198, 324-333.

    Article  CAS  Google Scholar 

  • Havaux, M., Tardy, F., Ravenel, J., Chanu, D. and Parot, P. (1996). Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves, influence of the xanthophyll content. Plant Cell Environ. 19, 1359–1368.

    CAS  Google Scholar 

  • Heber, U. (2002). Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants. Photosynth. Res. 73, 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Heber, U. and Walker, D. (1992). Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol. 100, 1621–1626.

    CAS  Google Scholar 

  • Heckathorn, S. A., Downs, C. A., Sharkey, T. D. and Coleman, J. S. (1998). The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116, 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Heckathorn, S. A., Ryan, S. L., Baylis, J. A., Wang, D. F., Hamilton, III, E. W., Cundiff, L. and Luthe, D. S. (2002). In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem II during heat stress. Funct. Plant Biol. 29, 933–944.

    Article  CAS  Google Scholar 

  • Holt, A. S. and French, C. S. (1946). The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Arch. Biochem. Biophys. 9, 25–43.

    CAS  Google Scholar 

  • Hong, S. W., Lee, U. and Vierling, E. (2003). Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 132, 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Hong, S. W. and Vierling, E. (2000). Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc. Nat. Acad. Sci. 97, 43-92.

    Google Scholar 

  • Horton, P., Ruban, A. V. and Walters, R. G. (1996). Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C.A. (2001). Climate change 2001, The scientific basis. Cambridge University Press, Cambridge, UK. 896 pp.

    Google Scholar 

  • Hugly, S., Kunst, L., Browse, J. and Somerville, C. (1989). Enhanced thermal tolerance of photosynthesis and altered chloroplast ultrastructure in a mutant of Arabidopsis deficient in lipid desaturation. Plant Physiol. 90, 1134–1142.

    CAS  Google Scholar 

  • Hulsebosch, R. J., Allakhverdiev, S. I., Klimov, V. V., Picorel, R. and Hoff, A. J. (1998). Effect of bicarbonate on the S-2 multiline EPR signal of the oxygen-evolving complex in photosystem II membrane fragments. FEBS Lett. 424, 146–148.

    Article  PubMed  CAS  Google Scholar 

  • Huxman, T. E., Hamerlynck, E. P., Loik, M. E. and Smith, S. D. (1998). Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant Cell Environ. 21, 1275–1283.

    Google Scholar 

  • Izu, H., Inouye, S., Fujimoto, M., Shiraishi, K., Naito, K. and Nakai, A. (2004). Heat shock transcription factor 1 is involved in quality-control mechanisms in male germ cells. Biol. Reprod. 70, 18–24.

    PubMed  CAS  Google Scholar 

  • Jiao, J. and Grodzinski, B. (1996). The effect of leaf temperature and photorespiratory conditions on export of sugars during steady-state photosynthesis in Salvia splendens. Plant Physiol. 111, 169–178.

    PubMed  CAS  Google Scholar 

  • Joët, T., Cournac, L., Peltier, G. and Havaux, M. (2002). Cyclic electron flow around photosystem I in C3 plants. In vivo control by the redox state of chloroplasts and involvement of the NADH-dehydrogenase complex. Plant Physiol. , 128, 760–769.

    PubMed  Google Scholar 

  • Joshi, M. K., Desai, T. S. and Mohanty, P. (1995). Temperature-dependent alterations in the pattern of photochemical and non-photochemical quenching and associated changes in the photosystem II conditions of the leaves. Plant Cell Physiol. 36, 1221–1227.

    CAS  Google Scholar 

  • Kakani, V. G., Prasad, P. V. V., Craufurd, P. Q. and Wheeler, T. R. (2002). Response of in vitro pollen germination and pollen tube growth of groundnut (Arachis hypogaea L.) genotypes to temperature. Plant Cell Environ. 25, 1651–1661.

    Article  Google Scholar 

  • Katoh, S. and San Pietro, A. (1967). Ascorbate-supported NADP photoreduction by heated Euglena chloroplasts. Arch. Biochem. Biophys. 122, 144–152.

    Article  PubMed  CAS  Google Scholar 

  • Kimimura, M. and Katoh, S. (1972). On the functional site of manganese in photosynthetic electron transport system. Plant Cell Physiol. 13, 287–296.

    CAS  Google Scholar 

  • Kishitani, S., Takanami, T., Suzuki, M., Oikawa, M., Yokoi, S., Ishitani, M., Alvarez-Nakase, A. M., Takabe, T. and Takabe, T. (2000). Compatibility of glycinebetaine in rice plants, evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ. 23, 107–114.

    Article  CAS  Google Scholar 

  • Klimov, V. V., Allakhverdiev, S. I., Nishiyama, Y., Khorobrykh, A. A. and Murata, N. (2003). Stabilization of the oxygen-evolving complex of photosystem II by bicarbonate and glycinebetaine in thylakoid and subthylakoid preparations. Func. Plant Biol. 30, 797–803.

    CAS  Google Scholar 

  • Klimov, V. V. and Baranov, S. V. (2001). Bicarbonate requirement for the water-oxidizing complex of photosystem II. Biochim. Biophys. Acta. 1503, 187–196.

    PubMed  CAS  Google Scholar 

  • Klimov, V. V., Baranov, S. V. and Allakhverdiev, S. I. (1997a). Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. FEBS Lett. 418, 243–246.

    Article  CAS  Google Scholar 

  • Klimov, V. V., Hulsebosch, R. J., Allakhverdiev, S. I., Wincencjusz, H., van Gorkom, H. J. and Hoff, A. J. (1997b). Bicarbonate may be required for ligation of manganese in the oxygen-evolving complex of photosystem II. Biochemistry , 36, 16277–16281.

    Article  CAS  Google Scholar 

  • Kobza, J. and Edwards, G. E. 1987. Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol. 83, 69–74.

    CAS  Google Scholar 

  • Krishna, P., Sacco, M., Cherutti, J. F. and Hill, S. (1995). Cold-Induced Accumulation of hsp90 Transcripts in Brassica napus. Plant Physiol. 107, 915–923

    PubMed  CAS  Google Scholar 

  • Kunst, L., Browse, J. and Somerville, C. (1989). Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid desaturation. Plant Physiol. 91, 401–408.

    CAS  Google Scholar 

  • Law, R. D., and Crafts-Brandner, S. J. (1999). Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1, 5-bisphosphate carboxylase/oxygenase. Plant Physiol. 120, 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Leonardos, E. D., Tsujita, M. J. and Grodzinski, B. (1996). The effect of source or sink temperature on photosynthesis and 14C-partitioning in and export from a source leaf of Alstroemeria. Physiol. Plant. 97, 563–575.

    Article  CAS  Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annu. Rev. Biochem. 55, 1151–1191.

    Article  PubMed  CAS  Google Scholar 

  • Lobell, D. B. and Asner, G. P. (2003). Climate and management contributions to recent trends in U.S. agricultural yields. Science. 299, 1032.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B. A. and Monson, R. K. (1999). Thermotolerance of leaf discs from four isoprene-emitting species is not enhanced by exposure to exogenous isoprene. Plant Physiol. 120, 821–825.

    Article  PubMed  CAS  Google Scholar 

  • Lohmann, C., Eggers-Schumacher, G., Wunderlich, M. and Schöffl, F. (2004). Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol. Genet. Genomics. 271, 11–21.

    PubMed  CAS  Google Scholar 

  • Lu, Z. M., Chen, J. W., Percy, R. G. and Zeiger, E. (1997). Photosynthetic rate, stomatal conductance and leaf area in two cotton species (Gossypium barbadense and Gossypium hirsutum) and their relation with heat resistance and yield. Aust. J. Plant Physiol. 24, 693–700.

    Google Scholar 

  • Lunde, C., Jensen, P. E., Haldrup, A., Knoetzel, J. and Scheller, H. V. (2000). The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature. 408, 613–615.

    PubMed  CAS  Google Scholar 

  • Lydakis-Simantiris, N., Hutchison, R. S., Betts, S. D., Barry, B. A. and Yocum, C. F. (1999). Manganese stabilizing protein of photosystem II is a thermostable, natively unfolded polypeptide. Biochemistry. 38, 404–414.

    PubMed  CAS  Google Scholar 

  • Maeda, N., Kanai, T., Atomi, H. and Imanaka, T. (2002). The unique pentaugonal structure of an archaeal Rubisco is essential for its high thermostability. J. Biol. Chem. 277, 31656–31662.

    PubMed  CAS  Google Scholar 

  • Malik, M. K., Slovin, J. P., Hwang, C. H. and Zimmerman, J. L. (1999). Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant J. 20, 89–99.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J. S., DeRocher, A. E., Keegstra, K. and Vierling, E. (1990). Identification of heat shock protein hsp70 homologues in chloroplasts. Proc. Nat. Acad. Sci. 87, 374–378.

    PubMed  CAS  Google Scholar 

  • Matsui, T., Namuco, O. S., Ziska, L. H. and Horie, T. (1997). Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 51, 213–219.

    Article  Google Scholar 

  • McCarthy, J.J., Canziani, D.F., Leary, N.A., Dokken, D.J. and White, K.S. (Eds.) (2001). Climate Change 2001, Impacts, adaptation, and vulnerability. Summary for policy makers. Cambridge University Press, Cambridge, UK. 1042 pp.

    Google Scholar 

  • Molotkovsky, Y. G. (1968). Hydrolysis of phospholipids and formation of free fatty acids in isolated chloroplasts. Biokhimiya. 33, 961–968.

    Google Scholar 

  • Molotkovsky, Y. G., and I. M. Zhestkova (1965). The influence of heating on the morphology and photochemical activity of isolated chloroplasts. Biochem. Biophys. Res. Commun. 20, 411–415.

    Article  PubMed  CAS  Google Scholar 

  • Monson, R. K., Stidham, M. A., Williams, G. J., Edwards, G. E. and Uribe, E. G. (1982). Temperature dependence of photosynthesis in Agropyron smithii Rydb .1. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol. 69, 921–928.

    CAS  Google Scholar 

  • Moon, B. Y., Higashi, S., Gombos, Z. and Murata, N. (1995). Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc. Nat. Acad. Sci. 92, 6219–6223.

    PubMed  CAS  Google Scholar 

  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H. and Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science. 287, 476–479.

    Article  PubMed  CAS  Google Scholar 

  • Muslin, E. H., Clark, S. E. and Henson, C. A. (2002). The effect of proline insertions on the thermostability of a barley a-glucosidase. Protein Eng. 15, 29–33.

    PubMed  CAS  Google Scholar 

  • Nash, D., Miyao, M. and Murata, N. (1985). Heat inactivation of oxygen evolution in photosystem . II particles and its acceleration by chloride depletion and exogenous manganese. Biochim. Biophys. Acta. 807, 127–133.

    CAS  Google Scholar 

  • Nobel, P. S. (1999). Physicochemical and Environmental Plant Physiology. Second Edition. Academic Press. 474 pp.

    Google Scholar 

  • Nover, L., Bharti, K., Döring, P., Mishra, S. K., Ganguli, A. and Scharf, K.-D. (2001). Arabidopsis and the heat stress transcription factor world, how many heat stress transcription factors do we need? Cell Stress Chaperones. 6, 177–189.

    PubMed  CAS  Google Scholar 

  • Pace, C. N., Shirley, B. A., McNutt, M. and Gajiwala, K. (1996). Forces contributing to the conformational stability of proteins. FASEB. 10, 75–83.

    CAS  Google Scholar 

  • Pastenes, C. and Horton, P. (1996a). Effect of high temperature on photosynthesis in beans 1. Oxygen evolution and chlorophyll fluorescence. Plant Physiol. 112, 1245–1251.

    CAS  Google Scholar 

  • Pastenes, C. and Horton, P. (1996b). Effect of high temperature on photosynthesis in beans 2. CO2 assimilation and metabolite contents. Plant Physiol. 112, 1253–1260.

    CAS  Google Scholar 

  • Pearcy, R. W. (1978). Effect of growth temperature on fatty acid composition of leaf lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 61, 484–486.

    CAS  Google Scholar 

  • Pearcy, R. W., Krall, J. P. and Sassenrath-Cole, G. F. (1996). Photosynthesis in fluctuating light environments. Photosynthesis and the Environment. Baker, N. R. (Ed.) Kluwer Academic Press pp. 321–346.

    Google Scholar 

  • Pechan, P. M., and Smykal, P.(2001). Androgenesis, Affecting the fate of the male gametophyte. Physiol. Plant. 111, 1–8.

    Article  CAS  Google Scholar 

  • Peet, M. M., Sato, S. and Gardner, R. G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant Cell Environ. 21, 225–231.

    Article  Google Scholar 

  • Porch, T. G. and Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24, 723–731.

    Article  Google Scholar 

  • Prandl, R., Hinderhofer, K., Eggers-Schumacher, G. and Schoffl, F. (1998). HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Mol. Gen. Gen. 258, 269–278.

    CAS  Google Scholar 

  • Prasad, P. V. V., Boote, K. J., Allen, L. H. and Thomas, J. M. G. (2002). Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biol. 8, 710–721.

    Article  Google Scholar 

  • Pratt, W. B., Krishna, P. and Olsen, L. J. (2001). Hsp90-binding immunophilins in plants, the protein movers. Trends Plant Sci. 6, 54–58.

    Article  PubMed  CAS  Google Scholar 

  • Pueyo, J. J., Alfonso, M., Andres, C. and Picorel, R. (2002). Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium. Biochim. Biophys. Acta. 1554, 29–35.

    PubMed  CAS  Google Scholar 

  • Pursiheimo, S., Martinsuo, P., Rintamaki, E. and Aro, E. M. (2003). Photosystem II protein phosphorylation follows four distinctly different regulatory patterns induced by environmental cues. Plant Cell Environ. 26, 1995–2003.

    Article  CAS  Google Scholar 

  • Queitsch, C., Hong, S. W., Vierling, E. and Lindquist, S. (2000). Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell. 12, 479–492.

    PubMed  CAS  Google Scholar 

  • Queitsch, C., Sangster, T. A. and Lindquist, S. (2002). Hsp90 as a capacitor for genetic variation. Nature. 417, 618–624.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, P. J., Joo, F., and Vigh, L. (1989). The role of unsaturated lipids in membrane-structure and stability. Prog. Biophys. Mol. Biol. 53, 71–103.

    PubMed  CAS  Google Scholar 

  • Radin, J. W., Lu, Z., Percy, R. G. and Zeiger, E. (1994). Genetic variability for stomatal conductance in Pima cotton and its relation to improvements of heat adaptation. Proc. Nat. Acad. Sci. 91, 7217–7221.

    PubMed  CAS  Google Scholar 

  • Raison, J. K., Roberts, J. K. M. and Berry, J. A. (1982). Correlations between the thermal stability of chloroplasts (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant Nerium oleander to growth temperature. Biochim. Biophys. Acta. 688, 218–228.

    CAS  Google Scholar 

  • Reddy, K. R., Hodges, H. F. and McKinion, J. M. (1995). Carbon dioxide and temperature effects on pima cotton growth. Agric. Ecosys. Environ. 54, 17–29.

    Article  Google Scholar 

  • Rintamäki, E., Kettunen, R. and Aro, E. M. (1996). Differential D1 dephosphorylation in functional and photodamaged photosystem II centers. Dephosphorylation is a prerequisite for degradation of damaged D1. J. Biol. Chem. 271, 14870–14875.

    PubMed  Google Scholar 

  • Rokka, A., Aro, E. M., Herrmann, R. G., Andersson, B. and Vener, A. V. (2000). Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol. 123, 1525–1535.

    Article  PubMed  CAS  Google Scholar 

  • Rokka, A., Zhang, L. and Aro, E. M. (2001). Rubisco activase, an enzyme with a temperature-dependent dual function? Plant J. 25, 463–471.

    Article  PubMed  CAS  Google Scholar 

  • Roy, H. and Andrews, T. J. (2000). Rubisco, Assembly and mechanism. Photosynthesis, Physiology and Metabolism. Leegood, R. C., T. D. Sharkey, and S. Von Caemmerer (Eds.) Kluwer Academic Publishers pp. 53–83.

    Google Scholar 

  • Sage, R. F. (1990). A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport, and triose phosphate use in response to light intensity and CO2in C3 plants. Plant Physiol. , 94, 1728–1734.

    CAS  Google Scholar 

  • Salvucci, M. E., Osteryoung, K. W., Crafts-Brandner, S. J. and Vierling, E. (2001). Exceptional sensitivity of rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol. 127, 1053–1064.

    Article  PubMed  CAS  Google Scholar 

  • Santarius, K. A. (1973). The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta. 113, 105–114.

    Article  CAS  Google Scholar 

  • Santarius, K. A. (1975). Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphorylation by heating. J. Therm. Biol. 1, 101–107.

    Google Scholar 

  • Santarius, K. A. and Müller, M. (1979). Investigations on heat resistance of spinach leaves. Planta. 146, 529–538.

    Article  CAS  Google Scholar 

  • Sato, S., Peet, M. M. and Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant Cell Environ. 23, 719–726.

    Article  Google Scholar 

  • Sazanov, L. A., Burrows, P. A. and Nixon, P. J. (1998). The chloroplast Ndh complex mediates the dark reduction of the plastoquinone pool in response to heat stress in tobacco leaves. FEBS Lett. 429, 115–118.

    Article  PubMed  CAS  Google Scholar 

  • Scharf, K.-D., Siddique, M. and Vierling, E. (2001). The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains (Acd proteins). Cell Stress Chaperones. 6, 225–237.

    PubMed  CAS  Google Scholar 

  • Scheibe, R. (1987). NADP+-malate dehydrogenase in C3 plants, Regulation and role of a light-activated enzyme. Physiol. Plant. 71, 393–400.

    CAS  Google Scholar 

  • Scheibe, R. and Stitt, M. (1988). Comparison of NADP-malate dehydrogenase activation, QA reduction and O2 evolution in spinach leaves. Plant Physiol. Biochem. 26, 473–481.

    CAS  Google Scholar 

  • Schrader, S. M., Wise, R. R., Wacholtz, W. F., Ort, D. R. and Sharkey, T. D. (2004). Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. Plant Cell Environ. 27, 725–735.

    Article  CAS  Google Scholar 

  • Schreiber, U. and Armond, P. A. (1978). Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. Biochim. Biophys. Acta. 502, 138–151.

    PubMed  CAS  Google Scholar 

  • Schuster, W. S. and Monson, R. K. (1990). An examination of the advantages of C3-C4 intermediate photosynthesis in warm environments. Plant Cell Environ. 13, 903–912.

    Google Scholar 

  • Sharkey, T. D., Badger, M. R., Von Caemmerer, S. and Andrews, T. J. (2001a). Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosynth. Res. 67, 147–156.

    Article  CAS  Google Scholar 

  • Sharkey, T. D., Chen, X. Y. and Yeh, S. (2001b). Isoprene increases thermotolerance of fosmidomycinfed leaves. Plant Physiol. 125, 2001–2006.

    Article  CAS  Google Scholar 

  • Sharkey, T. D. and Singsaas, E. L. (1995). Why plants emit isoprene. Nature. 374, 769–769.

    Article  CAS  Google Scholar 

  • Sharkey, T. D. and Yeh, S. S. (2001). Isoprene emission from plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 407–436.

    Article  PubMed  CAS  Google Scholar 

  • Singsaas, E. L., Laporte, M. M., Shi, J.-Z., Monson, R. K., Bowling, D. R., Johnson, K., Lerdau, M., Jasentuliyana, A. and Sharkey, T. D. (1999). Leaf temperature fluctuation affects isoprene emission from red oak (Quercus rubra) leaves. Tree Physiol. 19, 917–924.

    PubMed  CAS  Google Scholar 

  • Singsaas, E. L., Lerdau, M., Winter, K. and Sharkey, T. D. (1997). Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol. 115, 1413–1420.

    PubMed  CAS  Google Scholar 

  • Singsaas, E. L. and Sharkey, T. D. (1998). The regulation of isoprene emission responses to rapid leaf temperature fluctuations. Plant Cell Environ. 21, 1181–1188.

    Article  CAS  Google Scholar 

  • Snyders, S. and Kohorn, B. D. (1999). TAKs, thylakoid membrane protein kinases associated with energy transduction. J. Biol. Chem. 274, 9137–9140.

    Article  PubMed  CAS  Google Scholar 

  • Snyders, S. and Kohorn, B. D. (2001). Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J. Biol. Chem. 276, 32169.

    Article  PubMed  CAS  Google Scholar 

  • Stidham, M. A., Uribe, E. G. and Williams, G. J. (1982). Temperature dependence of photosynthesis in Agropyron smithii Rydb .2. Contribution from electron transport and photophosphorylation. Plant Physiol. 69, 929–934.

    CAS  Google Scholar 

  • Sun, W., Van Montegu, M. and Verbruggen, N. (2002). Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577, 1–9.

    PubMed  CAS  Google Scholar 

  • Sundby, C., Melis, A., Maenpaa, P. and Andersson, B. (1986). Temperature-dependent changes in the antenna size of photosystem-II - reversible conversion of photosystem IIa to photosystem IIb. Biochim. Biophys. Acta. 851, 475–483.

    CAS  Google Scholar 

  • Taub, D. R., Seemann, J. R. and Coleman, J. S. (2000). Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell Environ. 23, 649–656.

    Article  CAS  Google Scholar 

  • Terzaghi, W. B., Fork, D. C., Berry, J. A. and Field, C. B. (1989). Low and high temperature limits to PSII. A survey using trans-parinaric acid, delayed light emission, and Fochlorophyll fluorescence. Plant Physiol. 91, 1494–1500.

    CAS  Google Scholar 

  • Thomas, P. G., Dominy, P. J., Vigh, L., Mansourian, A. R., Quinn, P. J. and Williams, W. P. (1986a). Increased thermal stability of pigment-protein complexes of pea thylakoids following catalytic hydrogenation of membrane lipids. Biochim. Biophys. Acta. 849, 131–140.

    CAS  Google Scholar 

  • Thomas, P. G., Quinn, P. J. and Williams, W. P. (1986b). The origin of photosystem-I-mediated electron-transport stimulation in heat-stressed chloroplasts. Planta. 167, 133–139.

    Article  CAS  Google Scholar 

  • Thompson, L. K., Blaylock, R., Sturtevant, J. M. and Brudvig, G. W. (1989). Molecular basis of the heat denaturation of photosystem II. Biochemistry. 28, 6686–6695.

    PubMed  CAS  Google Scholar 

  • van Rensen, J. J. S., Xu, C. H. and Govindjee (1999). Role of bicarbonate in photosystem II, the water-plastoquinone oxido-reductase of plant photosynthesis. Physiol. Plant. 105, 585–592.

    Google Scholar 

  • Vener, A. V., Harms, A., Sussman, M. R., and Vierstra, R. D. (2001). Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J. Biol. Chem. 276, 6959–6966.

    Article  PubMed  CAS  Google Scholar 

  • Vener, A. V., Rokka, A., Fulgosi, H., Andersson, B. and Herrmann, R. G. (1999). A cyclophilinregulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. Biochemistry. 38, 14955–14965.

    Article  PubMed  CAS  Google Scholar 

  • Vener, A. V., van Kan, P. J. M., Gal, A., Andersson, B. and Ohad, I. (1995). Activation/deactiva-tion cycle of redox-controlled thylakoid protein phosphorylation. J. Biol. Chem. 270, 25225–25232.

    PubMed  CAS  Google Scholar 

  • Vieille, C. and Zeikus, G. J. (2001). Hyperthermophilic enzymes, Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43.

    PubMed  CAS  Google Scholar 

  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620.

    Article  CAS  Google Scholar 

  • Vijayan, P. and Browse, J. (2002). Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol. 129, 876–885.

    Article  PubMed  CAS  Google Scholar 

  • Wang, D. and Luthe, D. S. (2003). Heat sensitivity in a bentgrass variant. Failure to accumulate a chloroplast heat shock protein isoform implicated in heat tolerance. Plant Physiol. 133, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Waters, E. R. (1995). The molecular evolution of the small heat-shock proteins in plants. Genetics. 141, 785–795.

    PubMed  CAS  Google Scholar 

  • Waters, E. R. (2003). Molecular adaptation and the origin of land plants. Mol. Phyl. Evol. 29, 456–463.

    CAS  Google Scholar 

  • Weis, E. (1981a). Reversible effects of high, sublethal temperatures on light-induced light scattering changes and electrochromic pigment absorption shift in spinach leaves. Z. Pflanzenphysiol. 101, 169–178.

    Google Scholar 

  • Weis, E. (1981b). Reversible heat-inactivation of the Calvin cycle - A possible mechanism of the temperature regulation of photosynthesis. Planta. 151, 33–39.

    Article  CAS  Google Scholar 

  • Williams, W. P., Brain, A. P. R. and Dominy, P. J. (1992). Induction of non-bilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to the thermal stability of Photosystem II. Biochim. Biophys. Acta. 1099, 137–144.

    CAS  Google Scholar 

  • Wise, R. R., Olson, A. J., Schrader, S. M. and Sharkey, T. D. (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ. 27, 717–724.

    Article  CAS  Google Scholar 

  • Wydrzynski, T. and Sauer, K. (1980). Periodic changes in the oxidation-state of manganese in photosynthetic oxygen evolution upon illumination with flashes. Biochim. Biophys. Acta. 589, 56–70.

    PubMed  CAS  Google Scholar 

  • Yamamoto, Y. and Nishimura, M. (1983). Organization of the O2-evolution enzyme complex in a highly active O2-evolving photosystem-II prepartion. The Oxygen Evolving System of Photosyn-thesis. Inoue, Y., Crofts, A. R., Govindjee, Murata, N., Renger, G. and Satoh, K. (Eds.) Academic Press pp. 229–238.

    Google Scholar 

  • Yamane, Y., Kashino, Y., Koike, H. and Satoh, K. (1998). Effects of high temperatures on the photosynthetic systems in spinach, Oxygen-evolving activities, Fo fluorescence characteristics and the denaturation process. Photosynth. Res. 57, 51–59.

    Article  CAS  Google Scholar 

  • Yamane, Y., Shikanai, T., Kashino, Y., Koike, H. and Satoh, K. (2000). Reduction of QAin the dark, Another cause of fluorescence Fincreases by high temperatures in higher plants. Photosynth. Res. , 63, 23–34.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T. and Butler, W. L. (1968). Inhibition of chloroplasts by UV-irradiation and heat-treatment. Plant Physiol. 43, 2037–2040.

    PubMed  CAS  Google Scholar 

  • Yang, G. P., Rhodes, D. and Joly, R. J. (1996). Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycinebetaine-containing maize lines. Aust. J. Plant Physiol. 23, 437–443.

    CAS  Google Scholar 

  • Yang, Z. L., Li, L. B. and Kuang, T. Y. (2002a). Thermal stability of oxygen evolution in photosystem II core complex in the presence of digalactosyl diacylglycerol. Chin. Sci. Bull. 47, 2089–2092.

    CAS  Google Scholar 

  • Yang, Z. L., Wang, Z. N., Li, L. B. and Kuang, T. Y. (2002b). Oxygen-evolving activity in photosystem II core complex of photosynthetic membrane in the presence of native lipid. Chin. J. Chem. 20, 576–582.

    CAS  Google Scholar 

  • Young, L. W., Wilen, R. W. and Bonham-Smith, P. C. (2004). High temperature stress of Brassica napus during flowering reduces micro- and megagametophyte fertility, induces fruit abortion, and disrupts seed production. J. Exp. Bot. 55, 485–495.

    Article  PubMed  CAS  Google Scholar 

  • Yruela, I., Allakhverdiev, S. I., Ibarra, J. V. and Klimov, V. V. (1998). Bicarbonate binding to the water-oxidizing complex in the photosystem II. A Fourier transform infrared spectroscopy study. FEBS Lett. 425, 396–400.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. M., Lohmann, C., Prändl, R. and Schöffl, F. (2003). Heat stress-dependent DNA binding of Arabidopsis heat shock transcription factor HSF1 to heat shock gene promoters in Arabidopsis suspension culture cells in vivo. Biol. Chem. 384, 959–963.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

SHARKEY, T.D., SCHRADER, S.M. (2006). HIGH TEMPERATURE STRESS. In: Madhava Rao, K., Raghavendra, A., Janardhan Reddy, K. (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_4

Download citation

Publish with us

Policies and ethics