Skip to main content

Fullerenes and Related Structural Forms of Carbon in Chondritic Meteorites and the Moon

  • Chapter
Natural Fullerenes and Related Structures of Elemental Carbon

Abstract

Reports concerning the presence or absence of fullerenes in chondritic meteorites are reviewed. Structural forms of carbonaceous matter in these meteorites are discussed in the context of fullerene formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alaerts, L., Lewis, R.S., Matsuda, J. and Anders, E. (1980) Isotopic anomalies of noble gases in meteorites and their origins-VI. Presolar components in the Murchison C2 chondrite. Geochim. Cosmochim. Acta, 44, 189–209.

    Article  CAS  Google Scholar 

  • Alexander, C.M.O’D., Arden, J.W., Ash, R.D. and Pillinger, C.T. (1990) Presolar components in the ordinary chondrites. Earth. Planet. Sci. Lett., 99, 220–229.

    Article  CAS  Google Scholar 

  • Amari, S., Anders, E., Virag, A. and Zinner, E. (1990a) Interstellar graphite in meteorites. Nature, 345, 238–240.

    Article  CAS  Google Scholar 

  • Amari, S., Zinner, E. and Lewis, R.S. (1990b) Two types of interstellar carbon grains in the Murchison carbonaceous chondrite (abstract). Meteoritics, 25, 348–349.

    Google Scholar 

  • Amari, S., Lewis, R.S. and Anders, E. (1994) Interstellar grains in meteorites I. Isolation of SiC, graphite, and diamond: Size distributions of SiC and graphite. Geochim. Cosmochim. Acta, 58, 459–470.

    Article  CAS  Google Scholar 

  • Anders, E. and Zinner, E. (1993) Interstellar grains in primitive meteorites: Diamond, silicon carbide and graphite. Meteoritics, 28, 490–514.

    CAS  Google Scholar 

  • Arden, J.W., Verchovsky, A.B. and Pillinger, C.T. (1994) The abundance of interstellar diamond in meteorites (abstract). Meteoritics, 29, 438.

    Google Scholar 

  • Ash, R.D., Russell, S.S., Wright, I.P. and Pillinger, C.T. (1993) Minor high temperature components confirmed in carbonaceous chondrites by stepped combustion using a new sensitive static mass spectrometer (abstract), Lunar Planet. Sci., 22, 35–36, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Babaev, V.G. and Guseva, M.B. (1999) Ion-assisted condensation of carbon. In Carbyne and Carbynoid Structures, R.B. Heimann, S.E. Evsyukov and L. Kavan, Eds., 159–171, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Babina, V.M., Boustie, M., Guseva, M.B., Zhuk, A.Z., Moigault, A., Milyavskyi, V.V. (1999) Dynamic synthesis of crystalline carbyne from graphite and amorphous carbon. High Temp. Sci., 37, 543–551.

    CAS  Google Scholar 

  • Banhart, F. and Ajayan, P.M. (1996) Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 382, 433–435.

    Article  CAS  Google Scholar 

  • Banhart, F., Füller, T., Redlich, Ph. and Ajayan, P.M. (1997) The formation, annealing and self-compression of carbon onions under electron irradiation. Chem. Phys. Lett., 269, 349–355.

    Article  CAS  Google Scholar 

  • Bauman, A.J. and Devaney, J.R. (1973) Allende C-3 chondrite carbonaceous phase: scanning electron morphology, differential thermal analysis, solvent properties, and spark source and electron impact mass spectrometry. Meteoritics, 8, 13–14.

    Google Scholar 

  • Bauman, A.J. and Devaney, J.R. and Bollin, E.M. (1973) Allende meteorite carbonaceous phase: intractable nature and scanning electron morphology. Science, 241, 264–267.

    Google Scholar 

  • Becker, L. and Bunch, T.E. (1997) Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite. Meteorit. Planet. Sci., 32, 479–487.

    CAS  Google Scholar 

  • Becker, L., McDonnald, G.D. and Bada, J.L. (1993) Carbon onions in meteorites. Nature, 361, 595.

    Article  CAS  Google Scholar 

  • Becker, L., Bada, J.L., Winans, R.E. and Bunch, T.E. (1994) Fullerenes in Allende meteorite. Nature, 372, 507.

    Article  CAS  Google Scholar 

  • Becker, L., Bada, J.L. and Bunch, T.E. (1995) PAH’s, fullerenes and fulleranes in the Allende meteorite (abstract). Lunar Planet. Sci., 26, 87–88, The Lunar and Planetary Institute, Houston Texas, USA.

    Google Scholar 

  • Becker, L., Poreda, R.J. and Bada, J.L. (1996) Extraterrestrial helium trapped in fullerenes in the Sudbury Impact Structure. Science, 272, 249–252.

    Article  CAS  Google Scholar 

  • Becker, L., Bunch, T.E. and Allamandola, L.J. (1999) Higher fullerenes in the Allende meteorite. Nature, 400, 227–228.

    Article  CAS  Google Scholar 

  • Becker, L., Poreda, R.J. and Bunch, T.E. (2000a) Fullerenes and noble gases in the Murchison and Allende meteorites. Lunar Planet. Sci., 31, abstract #1803, The Lunar and Planetary Institute, Houston, Texas, USA (CD ROM).

    Google Scholar 

  • Becker, L., Poreda, R.J. and Bunch, T.E. (2000b) Fullerenes: An extraterrestrial carbon carrier phase for noble gases. Proc. Natl. Acad. Sci., 97, 2997–2983.

    Google Scholar 

  • Bernatowicz, T.J. and Cowsik, R. (1996) Conditions in stellar outflows from laboratory studies of presolar grains. In Astrophysical Implications of the Laboratory Study of Presolar Materials, T. J. Bernatowicz and E. Zinner, Eds., Am. Inst. Physics Conf. Proc., 402, 451–476, AIP Press, Woodbury, New York.

    Google Scholar 

  • Bernatowicz, T.J., Gibbons, P.C. and Lewis, R.S. (1989) Meteoritic diamonds: Nature of the amorphous component (abstract). Lunar Planet. Sci., 20, 65–66, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Bernatowicz, T.J., Gibbons, P.C. and Lewis, R.S. (1990) Electron energy loss spectrometry of interstellar diamonds. Astrophys. J., 359, 246–255.

    Article  CAS  Google Scholar 

  • Bernatowicz, T.J., Amari, S., Zinner, E.K. and Lewis, R.S. (1991) Interstellar grains within interstellar grains. Astrophys. J., 373, L73–L76.

    Article  CAS  Google Scholar 

  • Bernatowicz T.J., Cowsik R., Gibbons P.C., Lodders K., Fegley, Jr. B., Amari S. and Lewis R.S. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. Astrophys. J., 472, 760–782.

    Article  CAS  Google Scholar 

  • Blake, D.F., Freund, F., Shipp, R., Bunch, T.E., Flores, J., Chang, S., Krishnan, K.M., Echer, C. and Ackland, D. (1987) Analytical electron microscopy of interstellar diamond from Allende (abstract). Meteoritics, 22, 329–330.

    Google Scholar 

  • Blake, D.F., Freund, F., Krishnan, K.F.M., Echer, C.J., Shipp, R., Bunch, T.E., Tielens, A.G., Lipari, R.J., Hetherington, C.J.D. and Chang, S. (1988) The nature and origin of interstellar diamond. Nature, 332, 611–613.

    Article  CAS  Google Scholar 

  • Breger, I.A., Zubovic, P., Chandler, R.S. and Clarke, R.S. (1972) Occurrence and significance of formaldehyde in the Allende carbonaceous chondrite. Nature, 236, 155–158.

    Article  CAS  Google Scholar 

  • Brown, P.G., Hildebrand, A.R., Zolensky, M.E., Grady, M., Clayton, R.N., Mayeda, T.K., Tagliaferri, E., Spalding, R., MacRea, N.D., Hoffman, E.L., Mittlefehldt, D.W., Wacker, J.F., Bird, J.A., Campbell, M.D., Carpenter, R., Gingerich, H., Glatiotis, M., Greiner, E., Mazur, M.J., McCausland, P. JA., Plotkin, H. and Mazur, T.R. (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science, 90, 320–325.

    Article  Google Scholar 

  • Bunch, T.E. and Chang, S. (1980) Carbonaceous chondrites-II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta, 44, 1543–1577.

    Article  CAS  Google Scholar 

  • Buseck, P. (2002) Geologic fullerenes: review and analysis. Earth Planet. Sci. Lett., 203, 781–792.

    Article  CAS  Google Scholar 

  • Buseck, P. and Barry, J.C. (1988) Twinned diamonds in the Orgueil carbonaceous chondrite (abstract). Meteoritics, 23, 261–262.

    Google Scholar 

  • Carey, W., Zinner, E., Fraundorf, P. and Lewis, R.S. (1987) Ion probe and TEM studies of a diamond bearing Allende residue (abstract). Meteoritics, 22, 349–350.

    Google Scholar 

  • Cataldo, F. (2000) Raman spectra of radiation-damaged graphite. Carbon, 38, 634–636.

    Article  CAS  Google Scholar 

  • Cataldo, F. (2001a) Some implications of the radiation treatment of graphite and carbon black. Fullerene Sci. Tech., 9, 409–424.

    Article  CAS  Google Scholar 

  • Cataldo, F. (2001b) Raman scattering investigation of carbynoid and diamond-like carbon. Fullerene Sci. Tech., 9, 153–160.

    Article  CAS  Google Scholar 

  • Cataldo, F. and Capitani, D. (1999) Preparation and characterization of carbonaceous matter rich in diamond-like carbon and carbyne. Mater. Chem. Phys., 59, 225–231.

    Article  CAS  Google Scholar 

  • Cataldo, F. and Keheyan, Y. (2002) On the mechanism of carbon clusters formation under laser irradiation. The case of diamond grains and solid C60 fullerene. Fullerenes, Nanotubes, and Carbon Nanostructures, 10, 313–332.

    Article  CAS  Google Scholar 

  • Chang, S., Mack, R. and Lennon, K. (1978) Carbon chemistry of separated phases of Murchison and Allende (abstract). Lunar Planet. Sci., 9, 157–158, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Croat, K., Bernatowicz, T.J., Stadermann, F.J., Messenger, S. and Amari, S. (2002) Coordinated isotopic and TEM studies of a supernova graphite. Lunar Planet. Sci., 33, abstract #1315, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).

    Google Scholar 

  • Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S. and Buseck, P.R. (1996) Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochim. Cosmochim. Acta, 60, 4853–4872.

    Article  CAS  Google Scholar 

  • De Vries, M.S., Reihs, K., Wendt, H.R., Golden, W.G., Hunziker, H.E., Fleming, R., Peterson, E. and Chang, S. (1993) A search for C60 in carbonaceous chondrites. Geochim. Cosmochim. Acta, 57, 933–935.

    Article  Google Scholar 

  • Donnet, J.B., Fousson, E., Wang, T.K., Samirant, M., Baras, C. and Pontier-Johnson, M. (2000a) Dynamic synthesis of diamonds. Diamond Rel. Mat., 9, 887–892.

    Article  CAS  Google Scholar 

  • Donnet, J-B., Fousson, E., Samirant, M., Wang, T.K., Pontier-Johnson, M.. and Eckhardt, A. (2000b) Shock synthesis of nanodiamonds from carbon precursors: identification of carbynes. Comptes Rendues Acad. Sci,. Paris, Series IIc, Chimie/Chemistry, 3, 359–364.

    CAS  Google Scholar 

  • Dran, J.C., Klossa, J. and Maurette, M. (1979) The predicted irradiation record of asteroidal regoliths and the origin of gas-rich meteorites (abstract). Lunar Planet. Sci., 10, 312–315, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Dravid, V.P., Lin, X., Wang, Y., Wang, X.K., Yee, A., Ketterson, J.B. and Chang, R.P.H. (1993) Buckytubes and derivatives: Their growth and implications for buckyball formation. Nature, 259, 1601–1604.

    CAS  Google Scholar 

  • Eberhardy, C.A. and Schultz, P.H. (2004) Probing impact-generated vapor plumes. Lunar Planet. Sci., 35, abstract #1855, Lunar and Planetary Institute, Houston, Texas, USA (CDROM).

    Google Scholar 

  • El Goresy, A. and Donnay, G. (1968) A new form of allotropic carbon from the Ries crater. Science, 161, 363–364.

    Article  Google Scholar 

  • Fisenko, A.V., Russell, S.S., Ash, R.D., Semjenova, L.F., Verchovsky, A.B. and Pillinger, C.T. (1992) Isotopic composition of carbon and nitrogen in the diamonds from the unequilibrated ordinary chondrite Krymka LL3.0 (abstract). Lunar. Planet. Sci., 23, 365–366, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Fraundorf, P. and Wackenhut, M. (2002) The core structure of presolar graphitic onions. Astrophys. J., 578, L153–L156.

    Article  CAS  Google Scholar 

  • Fraundorf, P., Fraundorf, G., Bernatowicz, T.J., Lewis, R.S. and Ming, T. (1989) Stardust in the TEM. Ultramicroscopy, 27, 401–412.

    Article  Google Scholar 

  • Fukunaga, K., Matsuda, J., Ito, K., Nagao, K. and Miyamoto, M. (1987) Chemical vapordeposition of diamonds from CH4-H2 gas mixtures and the origin of diamonds in meteorites (abstract). Meteoritics, 22, 381–382.

    Google Scholar 

  • Gilkes, K.W.R., Gaskell, P.H., Russell, S.S., Arden, J.W. and Pillinger, C.T. (1992) Do carbynes exist as interstellar material after all? (abstract). Meteoritics, 27, 224.

    Google Scholar 

  • Gilkes, K.W.R. and Pillinger, C.T. (1999) Carbon-How many allotropes associated with meteorites and impact phenomena? In Carbyne and Carbynoid Structures, R.B. Heimann, S.E. Evsyokov and L. Kavan, Eds., 17–30, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Gilmour, I., Russell, S.S., Newton, J., Pillinger, C.T., Arden, J.W., Dennis, T.J., Hare J.P., Kroto, H.W., Taylor, R. and Walton, D.R.M. (1993) A search for the presence of C60 as an interstellar grain in meteorites (abstract). Lunar. Planet. Sci., 22, 445–446, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Göbel, R., Ott, U. and Begemann, F. (1978) On trapped noble gases in ureilites. J. Geophys. Res., 83, 855–867.

    Google Scholar 

  • Goodrich, C. (1992) Ureilites: A critical review. Meteoritics, 27, 327–352.

    CAS  Google Scholar 

  • Goto, A., Kyotani, M., Tsugawa, K., Piao, G., Akagi K. and Koga, Y. (2001) Structure of pyrolytic carbon from polyacetylene. Carbon, 39, 2082–2086.

    Article  CAS  Google Scholar 

  • Grady, M.M., Swart, P.K. and Pillinger, C.T. (1981) Stable carbon isotopic measurements of ordinary chondrites (abstract). Meteoritics, 16, 319.

    Google Scholar 

  • Green, H.W., Radcliffe, S.V. and Heuer, A.H. (1971) Allende meteorite: A high-voltage electron petrographic study. Science, 172, 936–939.

    Article  CAS  Google Scholar 

  • Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta, 49, 2433–2444.

    Google Scholar 

  • Grumbach, M.P and Martin, R.M. (1996) Phase diagram of carbon at high pressures and temperatures. Phys. Rev. B, 54, 15730–15741.

    Article  CAS  Google Scholar 

  • Harris, P.J.F. and Vis, R.D. (2003) High resolution electron microscopy of carbon and nanocrystals in the Allende meteorite. Proc. Roy. Soc. London A., 459, 2069–2076.

    CAS  Google Scholar 

  • Harris, P.J.F., Vis, R.D. and Heymann, D. (2000) Fullerene-like carbon nanostructures in the Allende meteorite. Earth Planet. Sci. Lett., 183, 355–359.

    Article  CAS  Google Scholar 

  • Hayatsu, R., Matsuoka, S., Scott, R.G., Studier, M.H. and Anders, E. (1977) Origin of organic matter in the early solar system-VII. The organic polymer in carbonaceous chondrites. Geochim. Cosmochim. Acta, 41, 1325–1339.

    Article  CAS  Google Scholar 

  • Heimann, R.B. (1999) Resistive heating and laser irradiation. In Carbyne and Carbynoid Structures, R.B. Heimann, S.E. Evsyukov, L. Kavan, Eds., 139–148, Kluwer Academic Publishers Dordrecht, the Netherlands.

    Google Scholar 

  • Heimann, R.B., Kleiman, J. and Salansky, N.M. (1984) Structural aspects and conformation of linear carbon polytypes. Carbon, 22, 147–156.

    Article  CAS  Google Scholar 

  • Heimann, R.B., Fujiwara, S., Kakudate, Y., Koga, Y., Komatsu, T. and Nomura, M. (1985) A new carbon form obtained by weak shock compression of carbyne. Carbon, 33, 859–861.

    Article  Google Scholar 

  • Heymann, D. (1986) Buckminsterfullerene C60 and siblings: Their deduced properties as traps for inert gas atoms (abstract). Lunar Planet. Sci., 17, 337–338, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. (1990a) On the chemical attack of fullerene, soot, graphite, and sulfur with hot perchloric acid. Carbon, 29, 684–685.

    Article  Google Scholar 

  • Heymann, D. (1990b) The geochemistry of Buckminsterfullerene (C60) I: Solid solutions with sulfur and oxidation with perchloric acid (abstract). Lunar Planet. Sci., 22, 569–570, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. (1995a) Search for extractable fullerenes in the Allende meteorite (abstract). Lunar Planet. Sci., 25, 595–596, The Lunar and Planetary Institute Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. (1995b) Search for extractable fullerenes in the Allende meteorite. Meteoritics, 30, 436–438.

    CAS  Google Scholar 

  • Heymann, D. (1996a) Fullerenes were not found in lunar samples 20084 and 79261 (abstract). Lunar Planet. Sci., 27, 541–542, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. (1996b) Search for fullerenes in lunar fines 10084 and 79261. Meteorit. Planet. Sci., 31, 362–364.

    CAS  Google Scholar 

  • Heymann, D. (1997) Fullerenes and fulleranes in meteorites revisited. Astrophys. J., 489, L111–L114.

    Article  CAS  Google Scholar 

  • Heymann, D. (2001) ’Isotopically strange xenon’ in meteoritic nanodiamonds: Implantation by stellar winds? Astrophys. Space Sci., 275, 415–423.

    Article  CAS  Google Scholar 

  • Heymann, D. and Anders, E. (1967) Meteorites with short cosmic-ray exposure ages, as determined from their A126 contents. Geochim. Cosmochim. Acta, 31, 1793–1809.

    Article  CAS  Google Scholar 

  • Heymann, D. and Dziczkaniec, M. (1979) Xenon from intermediate zones of supernovae. Proc. Lunar Planet. Sci. Conf., 10, 1943–1960, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. and Dziczkaniec, M. (1980) A first roadmap for kryptology. Proc. Lunar Planet. Sci. Conf., 11, 1179–1213, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Heymann, D. and Pontier-Johnson, M.A. (2002) New prescriptions for growing interstellar carbonaceous cauliflowers Astrophys. J. Lett., 574, L91–L94.

    Article  CAS  Google Scholar 

  • Heymann, D., Stormer, Jr., J.C. and Pierson, M. (1990) Buckminsterfullerene (C60) dissolves in molten and solid sulfur. Carbon, 29, 1053–1055.

    Article  Google Scholar 

  • Hoppe, P., Amari, S., Zinner, E. and Lewis, R.S. (1992a) Large oxygen isotopic anomalies in graphite grains from the Murchison meteorite (abstract). Meteoritics, 27, 235.

    Google Scholar 

  • Hoppe, P., Amari, S., Zinner, E. and Lewis, R.S. (1992b) Just how many types of interstellar carbon? (abstract). Lunar Planet. Sci., 23, 553–554, The Lunar and Planetary Institute, Houston Texas, USA.

    Google Scholar 

  • Housley, R.M. and Clarke, D.R. (1980) XPS and STEM studies of Allende acid insoluble residues. Proc. Lunar Planet. Sci. Conf., 11, 945–958, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Hurt, R.H., Crawford, G.P. and Shim, H.S. (2000) Equilibrium nanostructure of primary soot particles. Proc. Combustion Inst., 28, 2539–2546.

    CAS  Google Scholar 

  • Huss, G.R. (1990) Ubiquitous interstellar diamond and silicon carbide in primitive chondrites: abundances reflect metamorphism. Nature, 347, 159–162.

    Article  CAS  Google Scholar 

  • Huss, G.R. and Lewis, R.S. (1994) Noble gases in presolar diamonds II: Component abundances reflect thermal processing. Meteoritics, 29, 811–829.

    CAS  Google Scholar 

  • Huss, G.R. and Lewis, R.S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type. Geochim. Cosmochim. Acta, 59, 115–160.

    Article  CAS  Google Scholar 

  • Jenkins, G.M. and Kawamura, K. (1976) Polymeric carbons-carbon fibre, glass and char, 178p., Cambridge University Press, Cambridge, London, New York, Melbourne.

    Google Scholar 

  • Jørgensen, U.G. (1988) Formation of Xe-HL-enriched diamond grains in stellar environments. Nature, 332, 702–705.

    Article  Google Scholar 

  • Kagi, H., Takahashi, K., Shimizu, H., Kitajima, F. and Masuda, A. (1991) In-situ micro raman studies on graphitic carbon in some Antarctic ureilites. Proc. NIPR Symp. Antarct. Meteorites, 4, 371–383.

    CAS  Google Scholar 

  • Kerridge J.F. and Matthews M.S., Eds. (1988) Meteorites and the Early Solar System, 1269p., The University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Kleiman, J., Heimann, R.B., Hawken, D. and Salansky, N.M. (1984) Shock compression and flash heating of graphite/metal at temperatures up to 3200 K and pressures up to 25 GPa. J. Appl. Phys., 56, 1440–1454.

    Article  CAS  Google Scholar 

  • Krätschmer, W., Lamb, L.D., Fostiropoulos, K. and Huffman, D. (1990) Solid C60: A new form of carbon. Nature, 347, 354–358.

    Article  Google Scholar 

  • Kroto, H.W. (1988) Space, stars, C60 and soot. Science, 242, 1139–1145.

    Article  CAS  Google Scholar 

  • Kroto, H.W. and Walton, D.R.M. (1993) Polyynes and the formation of fullerene. Phil. Trans. R. Soc. Lond. A, 343, 103–112.

    CAS  Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1985) C60: Buckminsterfullerene. Nature, 318, 162–163.

    Article  CAS  Google Scholar 

  • Kroto, H.W., Heath, J.R., O’Brien, S.C., Curl, R.F. and Smalley, R.E. (1987) Long carbon chain molecules in circumstellar shells. Astrophys. J., 314, 352–355.

    Article  CAS  Google Scholar 

  • Kudryavtsev, Y.P., Heimann, R.B. and Evsyukov, S.E. (1996) Carbynes: Advances in the field of linear carbon chain compounds. J. Mater. Sci., 31, 5557–5571.

    Article  CAS  Google Scholar 

  • Kudryavtsev, Y.P. (1999) The discovery of carbyne. In Carbyne and Carbynoid Structures, R.B. Heimann, S.E. Evsyukov, L. Kavan, Eds., 1–6, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Lewis, R.S. and Amari, S. (1992) Interstellar Murchison graphite: How many noble gas components? (abstract). Lunar Planet. Sci., 23, 775–776, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lewis, R.S. and Anders, E. (1988) Xenon-HL in diamonds from the Allende meteoritecomposite nature (abstract), Lunar Planet. Sci., 19, 679–680, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lewis, R.S., Srinivasan, B. and Anders, E. (1975) Host phase of a strange Xe component in Allende. Science, 190, 1251–1262.

    Article  CAS  Google Scholar 

  • Lewis, R.S., Matsuda, J.-I., Whittaker, A.G., Watts, E.J. and Anders, E. (1980) Carbynes: Carriers of primordial noble gases in meteorites (abstract). Lunar Planet. Sci., 11, 624–625, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lewis, R.S., Ebihara, M. and Anders, E. (1982) Unpaired electrons: An association with primordial gases in meteorites (abstract). Meteoritics, 17, 244–245.

    Google Scholar 

  • Lewis, R.S., Ming, T., Wacker, J.F., Anders, E. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160–162.

    Article  CAS  Google Scholar 

  • Lumpkin, G.R. (1981a) Electron microscopy of carbon in Allende acid residues (abstract). Lunar Planet. Sci., 12, 631–633, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lumpkin, G.R. (1981b) Electron microscopy of carbonaceous matter in Allende acid residues. Proc. Lunar Planet. Sci. Conf., 12, 1153–1166, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lumpkin, G.R. (1983a) Electron microscopy of carbonaceous matter in acid residues from the Orgueil (C1) and Cold Bokkeveld (C2) meteorites (abstract). Lunar Planet. Sci., 14, 450–451, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Lumpkin, G.R. (1983b) Microstructural variations in Allende carbonaceous matter (abstract). Lunar Planet. Sci., 14, 452–453, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • McCall, G.J.H. (1973) Meteorites and their origin, 352p., Davis and Charles, Newton Abbott, Australia.

    Google Scholar 

  • Milyavskiy, V.V., Borodina, T.I., Zhuk, A.Z. and Fortov, V.E. (2000) Shock-wave-induced transformation of graphite to carbyne. Mol. Mater., 13, 361–366.

    CAS  Google Scholar 

  • Ming, T. and Anders, E. (1988) Isotopic anomalies of Ne, Xe and C in meteorites. II. Interstellar diamond and SiC. Carriers of exotic noble gases. Geochim. Cosmochim. Acta, 52, 1235–1244.

    Article  CAS  Google Scholar 

  • Ming, T., Lewis, R.S. and Anders, E. (1987) Diamond and silicon carbide: carriers of presolar noble gases in carbonaceous chondrites. Meteoritics, 22, 462–463.

    Google Scholar 

  • Nakamura, K, Zolensky, M.E., Tomita, S., Nakashima, S. and Tomeoka, K. (2002) Hollow organic globules in the Tagish Lake meteorite as possible products of primitive organic reactions. Intl. J. Astrobiology, 1, 179–189.

    Article  CAS  Google Scholar 

  • Nichols, Jr, R.H., Hohenberg, C.M., Hoppe, P., Amari, S. and Lewis, R.S. (1992) 22Ne-E(H) and 4He in single SiC grains and 22Ne-E(L) in single Cα grains of known C-isotopic composition (abstract). Lunar Planet. Sci., 23, 989–990, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Nuth, III, J.A. (1987) Small-particle physics and interstellar diamonds. Nature, 329, 589.

    Article  Google Scholar 

  • Oberlin, A. (1989) High-resolution TEM studies of carbonization and graphitization. In Chemistry and Physics of Carbon, P.A. Thrower, Ed., 22, 1–144, Marcel Dekker, Inc., New York.

    Google Scholar 

  • Oberlin, A. (2002) Pyrocarbons. Carbon, 40, 7–24.

    Article  CAS  Google Scholar 

  • Oester, M.Y., Kuechl, D., Sipiera, P.P. and Welch, C.J. (1994) Search for fullerenes in stone meteorites (abstract). Meteoritics, 29, 513.

    Google Scholar 

  • Ott, U. (1993) Interstellar grains in meteorites. Nature, 364, 25–33.

    Article  CAS  Google Scholar 

  • Ott, U. (2001) Presolar grains in meteorites: an overview and some implications. Planet. Space Sci., 49, 763–767.

    Article  CAS  Google Scholar 

  • Papike, J.J., Ed. (1998) Interplanetary Dust Particles, Planetary Materials, Revs. Mineral., 36, 1052p., The Mineralogical Society of America, Washington, DC, USA.

    Google Scholar 

  • Pillinger, C.T. (1993) Elemental carbon as interstellar dust. Phil. Trans. R. Soc. Lond. A, 343, 73–86.

    CAS  Google Scholar 

  • Pizzarello, S., Huang, Y.S., Becke, L., Poreda, R.J., Nieman, R.A., Cooper, G. and Williams, M. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 2236–2239.

    Article  CAS  Google Scholar 

  • Pontiert-Johnson, M.A. (1998) Noirs de carbone au four: méchanisme de formation des particules (in French). Ph. D. Thesis, 185p., Université de Haute-Alsace, Mulhouse, France.

    Google Scholar 

  • Praburam, G. and Goree, J. (1995) Cosmic dust synthesis by accretion and coagulation. Astrophys. J., 441, 830–838.

    Article  CAS  Google Scholar 

  • Radicati di Brozolo, F., Bunch, T.E., Fleming, R.H. and Macklin, J. (1994) Observation of fullerenes in an LDEF impact crater. Nature, 369, 37–40.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. (1988) On graphite in primitive meteorites, chondritic interplanetary dust, and interstellar dust. Icarus, 74, 446–453.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. (1990) On diamond, graphite and amorphous carbons in primitive extraterrestrial solar system materials. In Carbon in the galaxy: Studies from Earth and Space, J.C. Tarter, S. Chang and D.J. DeFrees, Eds., NASA Conf. Publ., 3061, 339–340, NASA Scientific and Technical Information Division.

    Google Scholar 

  • Rietmeijer, F.J.M. (2005) Iron-sulfides and layer silicates: A new approach to aqueous processing of organics in interplanetary dust particles, CI and CM meteorites. Adv. Space Res., in press.

    Google Scholar 

  • Rietmeijer, F.J.M. and Rotundi, A. (2005) Natural carbynes, including chaoite, on Earth, in meteorites, comets, circumstellar and interstellar dust. In Polyynes: Synthesis, Properties, and Application, F. Cataldo, Ed., 339–370, CRC Press, Taylor & Francis Publishing Group, Boca Raton, Florida, USA.

    Google Scholar 

  • Rietmeijer, F.J.M., Schultz, P.H. and Bunch, T.E. (2003) Carbon calabashes in a shock-produced carbon melt. Chem. Phys. Lett., 374, 464–470.

    Article  CAS  Google Scholar 

  • Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P. and Bussoletti, E. (1998) Identification of carbon forms in soot materials of astrophysical interest. Astron. Astrophys., 329, 1087–1096.

    CAS  Google Scholar 

  • Russell, S.S., Arden, J.W. and Pillinger, C.T. (1991) Evidence for multiple sources of diamond from primitive chondrites. Science, 254, 1188–1191.

    Article  CAS  Google Scholar 

  • Russell, S.S., Pillinger, C.T., Arden, J.W., Lee, M.R. and Ott, U. (1992) A new type of meteoritic diamond in the enstatite chondrite Abee. Science, 256, 206–209.

    Article  CAS  Google Scholar 

  • Russell, S.S., Arden, J.W. and Pillinger, C.T. (1996) A carbon and nitrogen isotope study of diamonds from primitive chondrites. Meteorit. Planet. Sci., 31, 343–355.

    CAS  Google Scholar 

  • Schultz, L. and Kruse, H. (1989) Helium, neon, and argon in meteorites-A data compilation. Meteoritics, 24, 155–172.

    CAS  Google Scholar 

  • Schultz, P.H. (1996) Effect of impact angle on vaporization. J. Geophys Res., 101(E9), 21117–21136.

    Article  Google Scholar 

  • Sekine, T., Akaishi, M., Setaka, N. and Kondo, K.I. (1987) Diamond synthesis by weak shock loading. J. Mat. Sci., 22, 3615–3619.

    Article  CAS  Google Scholar 

  • Setaka, N. and Sekikawa, Y. (1980) Chaoite: a new allotropic form of carbon produced by shock compression. J. Am. Ceram. Soc., 63, 238–239.

    Article  CAS  Google Scholar 

  • Shim, H.S., Hurt, R.H. and Yang, N.Y.C. (2000) A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons. Carbon, 38, 29–45.

    Article  CAS  Google Scholar 

  • Simmonds, P.G., Bauman, A.J., Bollin, E.M., Gelpi, E. and Oro, J. (1969) The unextractable organic fraction of the Pueblito de Allende meteorite: evidence for its indigenous nature. Proc. Nat. Acad. Sci., 64, 1927–1934.

    Google Scholar 

  • Simon, S.B., Grossman, L., Clayton, R.N., Mayeda, T.K., Schwade, J.R., Sipiera, P.P., Wacker, J.F. and Wadhwa, M. (2004) The fall, recovery, and classification of the Park Forest meteorite. Meteorit. Planet. Sci., 39, 625–634.

    CAS  Google Scholar 

  • Smith, P.P.K and Buseck, P. (1980) High resolution transmission electron microscopy of an Allende acid residue (abstract). Meteoritics, 15, 368–369.

    Google Scholar 

  • Smith P.P.K. and Buseck P.R. (1981a) Graphitic carbon in the Allende meteorite: a microstructural study. Science, 212, 322–324.

    Article  CAS  Google Scholar 

  • Smith, PP.K. and Buseck, P.R. (1981b) Carbon in the Allende meteorite: Evidence for poorly graphitized carbon rather than carbyne. Proc. Lunar Planet. Sci. Conf., 12, 1167–1175, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Snow, T.P. and Witt, A.N. (1995) The interstellar carbon budget and the role of carbon in dust and large molecules. Science, 270, 1455–1460.

    Article  CAS  Google Scholar 

  • Spurný, P., Oberst, J. and Heinlein, D. (2003) Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature, 423, 151–153.

    Article  CAS  Google Scholar 

  • Stadermann, F.J., Bernatowicz, T.J., Croat, T.K., Zinner, E., Messenger, S. and Amari, S. (2002) Presolar graphite in the nanosims: A detailed look at the isotopic makeup of the spherule and its sub-components. Lunar Planet. Sci., 33, abstract #1796, The Lunar and Planetary Institute, Houston, Texas, USA (CD-ROM).

    Google Scholar 

  • Sugita, S., Schultz, P.H. and Adams, M.A. (1998) Spectroscopic measurements of vapor clouds due to oblique impacts. J. Geophys Res., 103(E8), 19427–19441.

    Article  CAS  Google Scholar 

  • Swart, P.K., Grady, M.M., Wright, I.P. and Pillinger, C.T. (1982) Carbon components and their isotopic compositions in the Allende meteorite. Proc. Lunar. Planet. Sci. Conf., 13, A283–A288, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Swart, P.K., Grady, M.M., Pillinger, C.T., Lewis, R.S. and Anders, E. (1983) Interstellar carbon in meteorites. Science, 220, 406–410.

    Article  CAS  Google Scholar 

  • Tanuma, S. (1999) Condensation of carbon vapor obtained by electrical discharge. In Carbyne and Carbynoid Structures, R.B. Heimann, S.E. Evsyukov and L. Kavan, Eds., 149–158, Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Taylor, R. and Abdul-Sada, A.K. (2000) There are no fullerenes at the K-T boundary. Fullerene Sci. Tech., 8, 47–54.

    CAS  Google Scholar 

  • Tielens, A.G.G.M., Seab, C.G., Hollenbach, D.J. and McKee, C.F. (1987) Shock processing of interstellar dust: Diamonds in the sky. Astrophys. J., 319, L109–L113.

    Article  CAS  Google Scholar 

  • Tingle, T.N., Becker, C.H. and Malhotra, R. (1991) Organic compounds in the Murchison and Allende carbonaceous chondrites studied by photoionization mass spectrometry. Meteoritics, 26, 117–127.

    CAS  Google Scholar 

  • Tracz, E., Borowiecki, T. and Scholz, R. (1990) TEM study of carbon shell formation on Ni/MgO catalyst. Proc. XII th Intl Congr. Electron Microscopy, 302–303, San Francisco Press Inc., San Francisco, California, USA.

    Google Scholar 

  • Travaglio, C., Gallino, R., Amari, S., Zinner, E., Woosley, S. and Lewis, R.S. (1999) Low-density graphite grains and mixing in Type II supernovae. Astrophys. J., 510, 325–354.

    Article  CAS  Google Scholar 

  • Ugarte, D. (1992) Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359, 707–709.

    Article  CAS  Google Scholar 

  • Verchovsky, A.B., Huss, G.R. and Pillinger, C.T. (1994) Nitrogen and carbon isotopes in presolar diamond samples with known noble gas isotopic signatures (abstract). Meteoritics, 29, 544–545.

    Google Scholar 

  • Vdovykin, G.P. (1969) New hexagonal modification of carbon in meteorites. Geochem. Int., 6, 915–918.

    Google Scholar 

  • Vdovykin, G.P. (1972) Forms of carbon in the new Haverö ureilite of Finland. Meteoritics, 7, 547–552.

    CAS  Google Scholar 

  • Vdovykin, G.P. and Moore, C.B. (1960) Carbon. In Handbook of Elemental Abundances, B. Mason, Ed., 81–91, Gordon and Breach, New York, USA.

    Google Scholar 

  • Virag, A., Zinner, E., Lewis, R.S. and Ming, T. (1989) Isotopic compositions of H, C, and N in Cα diamonds from the Allende and Murray carbonaceous chondrites (abstract). Lunar Planet. Sci., 20, 1158–1160, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Vis, R.D., Mrowiec, A., Kooyman, P.J., Matsubara, K. and Heymann, D. (2002) Microscopic search for the carrier phase Q of the trapped planetary noble gases in Allende, Leoville, and Vigarano. Meteorit. Planet. Sci., 37, 1391–1400.

    CAS  Google Scholar 

  • Wacker, J.F. (1986) Noble gases in the diamond-free ureilite, ALHA 78019: The roles of shock and nebular processes. Geochim. Cosmochim. Acta, 50, 633–642.

    Article  CAS  Google Scholar 

  • Wang, Z.L. and Yin, J.S. (1998) Graphitic hollow carbon calabashes. Chem. Phys. Lett., 289, 189–192.

    Article  CAS  Google Scholar 

  • Wieler, R., Anders, E., Baur, H., Lewis, R.S. and Signer, P. (1991) Noble gases in “phase Q”: Closed-system etching of an Allende residue. Geochim. Cosmochim. Acta, 55, 1709–1722.

    Article  CAS  Google Scholar 

  • Whittaker, A.G. (1978) Carbon: A new view of its high-temperature behavior. Science, 200, 763–764.

    Article  CAS  Google Scholar 

  • Whittaker, A.G. and Kintner, P.L. (1969) Carbon: Observations on the new allotropic form. Science, 165, 589–591.

    Article  CAS  Google Scholar 

  • Whittaker, A.G. and Kintner, P.L. (1976) Particle emission and related morphological changes occurring during the sublimation of graphitic carbons. Carbon, 14, 257–265.

    Article  CAS  Google Scholar 

  • Whittaker, A.G. and Kintner, P.L. (1985) Carbon: Analysis of spherules and splats formed from the liquid state and of the forms produced by quenching gas and solid. Carbon, 23, 255–262.

    Article  CAS  Google Scholar 

  • Whittaker, A.G. and Wolten, G.M. (1972) Carbon: a suggested new hexagonal crystal form. Science, 178, 54–56.

    Article  CAS  Google Scholar 

  • Whittaker, A.G., and Watts, E.J., Lewis, R.S. and Anders, E. (1980) Carbynes: carriers of primordial noble gases in meteorites. Science, 209, 1512–1514.

    Article  CAS  Google Scholar 

  • Yamada, K., Kunishige, H. and Sawaoka, A.B. (1991) Formation process of carbyne produced by shock compression. Naturwissenschaften, 78, 450–452.

    Article  CAS  Google Scholar 

  • Yamada, K., Burkhard, G., Dan, K., Tanabe, Y. and Sawaoka, A.B. (1994) Microstructures of carbon polymorphs formed in shocked compressed diamond powder utilizing an interaction of oblique shock-waves. Carbon, 32, 1197–1213.

    Article  CAS  Google Scholar 

  • Yamada, K., Tanabe, Y. and Sawaoka, A.B. (2000) Allotropes of carbon shock synthesized at pressures up to 15 Gpa. Phil. Mag. A, 80, 1811–1828.

    Article  CAS  Google Scholar 

  • Zinner, E., Wopenka, B., Amari, S. and Anders, E. (1990) Interstellar graphite and other carbonaceous grains from the Murchison meteorite: structure, composition, and isotopes of C, N, and Ne (abstract). Lunar Planet. Sci., 21, 1379–1380, The Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Heymann, D., Cataldo, F., Pontier-Johnson, M., Rietmeijer, F.J.M. (2006). Fullerenes and Related Structural Forms of Carbon in Chondritic Meteorites and the Moon. In: Natural Fullerenes and Related Structures of Elemental Carbon. Developments in Fullerene Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4135-7_8

Download citation

Publish with us

Policies and ethics