Skip to main content

Fullerenes and Nanodiamonds in Aggregate Interplanetary Dust and Carbonaceous Meteorites

  • Chapter
Natural Fullerenes and Related Structures of Elemental Carbon

Part of the book series: Developments in Fullerene Science ((DFUL,volume 6))

Abstract

If fullerenes are a common carbon phase in circumstellar dust and the presolar dust of the dense molecular wherein our solar system had formed, they should be present in the most primitive samples that still contain the vestiges of the accreting dust in the solar nebula 4.56 Ga ago. Such dust would be expected to have survived in comet nuclei and in the most primitive asteroids. They would be represented by collected chondritic, aggregate, interplanetary dust particles. As yet, there is no evidence of fullerenes in these particles but C60 and higher fullerenes are present in several carbonaceous chondrite meteorites. Metastable fullerenes may not survive the complex natural processing of comet and asteroid debris in the parent body, during solar system sojourn and atmospheric entry and laboratory storage. The possibility of fullerene modification to nanodiamonds in primitive asteroids is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anders, E. and Zinner, E. (1993) Interstellar grains in primitive meteorites: Diamond, silicon carbide, and graphite. Meteoritics, 28, 490–514.

    CAS  Google Scholar 

  • Bajt, S., Chapman, H.N., Flynn, G.J., Keller, L.P. (1996) Carbon characterization in interplanetary dust particles with a scanning transmission X-ray microscope (abstract). Lunar Planet. Sci., 27, 57–58, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Becker, L., Poreda, R.J. and Bunch, T.E. (2000) Fullerene: A new extraterrestrial carbon carrier phase for noble gases. Proc. Natl. Acad. Sci., 97, 2979–2983.

    Article  CAS  Google Scholar 

  • Bell, J.F., Davis, D.R., Hartmann, W.K. and Gaffey, M.J. (1989) Asteroids: The big Picture. In Asteroids II, R.P Binzel, T. Gehrels and M.S. Matthews, Eds., 921–945, University of Arizona Press, Tucson, Arizona, USA.

    Google Scholar 

  • Blake, D.F., Freund, F., Krishnan, K.F.M., Echer, C.J., Shipp, R., Bunch, T.E., Tielens, A.G., Lipari, R.J., Hetherington, C.J.D. and Chang, S. (1988) The nature and origin of interstellar diamond. Nature, 332, 611–613.

    Article  CAS  Google Scholar 

  • Bradley, J.P. (1994) Chemically anomalous, pre-accretionally irradiated grains in interplanetary dust from comets. Science, 265, 925–929.

    Article  CAS  Google Scholar 

  • Bradley, J.P., Humecki, H.J. and Germani, M.S. (1992) Combined infrared and analytical electron microscope studies of interplanetary dust particles. Astrophys. J., 394, 643–651.

    Article  CAS  Google Scholar 

  • Bradley, J.P., Keller, L.P., Brownlee, D.E. and Thomas, K.L. (1996) Reflectance spectroscopy of interplanetary dust particles. Meteorit. Planet. Sci, 31, 394–402.

    CAS  Google Scholar 

  • Brearley, A.J. and Jones, R.H. (1998) Chondritic meteorites. In Planetary Materials, J.J. Papike, Ed., Revs. Mineral. 36, 3-1–3-398, Mineralogical Society of America, Washington, D.C., USA.

    Google Scholar 

  • Brown, P.G., Hildebrand, A.R., Zolensky, M.E., Grady, M., Clayton, R.N., Mayeda, T.K., Tagliaferri, E., Spalding, R., MacRea, N.D., Hoffman, E.L., Mittlefehldt, D.W., Wacker, J.F., Bird, J.A., Campbell, M.D., Carpenter, R., Gingerich, H., Glatiotis, M., Greiner, E., Mazur, M.J., McCausland, P. JA., Plotkin, H., and Mazur, T.R. (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science, 90, 320–325.

    Article  Google Scholar 

  • Brownlee, D.E. (1985) Cosmic dust: Collection and research. Ann. Rev. Earth Planet. Sci., 13, 147–173.

    Article  Google Scholar 

  • Campins, H. and Swindle, T.D. (1998) Expected characteristics of cometary meteorites. Meteorit. Planet. Sci., 33, 1201–1211.

    CAS  Google Scholar 

  • Carlisle, D.B. and Braman, D.R. (1991) Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature, 352, 708–709.

    Article  CAS  Google Scholar 

  • Cassen, P. (2001) Nebular thermal evolution and the properties of primitive planetary materials. Meteorit. Planet. Sci., 36, 671–700.

    CAS  Google Scholar 

  • Chibante, L.P.F. and Heymann, D. (1993) On the geochemistry of fullerenes: Stability of C60 in ambient air and the role of ozone. Geochim. Cosmochim. Acta, 57, 1879–1881.

    Article  CAS  Google Scholar 

  • Chowdhury, K.D., Howard, J.B. and VanderSande, J.B. (1996) Fullerenic nanostructures in flames. J. Mat. Res., 11, 341–347.

    Google Scholar 

  • Clemett, S.J., Maechling, C.R., Zare, R.N., Swan, P.D. and Walker, R.M. (1993) Identification of complex aromatic molecules in individual interplanetary dust particles. Science, 262, 721–772.

    Article  CAS  Google Scholar 

  • Dai, Z.R., Bradley, J.P., Joswiak, D., Brownlee, D.E., Hill, H.G.M. and Genge, M.M. (2002) Possible in situ formation of meteoritic nanodiamonds in the early solar system. Nature, 418, 157–159.

    Article  CAS  Google Scholar 

  • Donnet, J.B., Fousson, E., Wang, T.K., Samirant, M., Baras, C. and Pontier-Johnson, M. (2000) Dynamic synthesis of diamonds. Diamond and Related Materials, 9, 887–892.

    Article  CAS  Google Scholar 

  • Ehrenfreund, P., Irvine, W., Becker, L., Blank, J., Brucato, J.R., Colangeli, L., Derenne, S., Despois, D., Dutrey, A., Fraaije, H., Lazcano, A., Owen, T. and Robert, F., an International Space Science Institute ISSI-team (2002) Astrophysical and astrochemical insights into the origin of life. Reports Progress Phys, 65: 1427–1487.

    Article  CAS  Google Scholar 

  • Flynn, G.J., Keller, L.P., Feser, M., Wirick, S. and Jacobsen, C. (2003) The origin of organic matter in the solar system: Evidence from the interplanetary dust particles. Geochim. Cosmochim. Acta, 67, 4791–4806.

    Article  CAS  Google Scholar 

  • Gradie, M.M., Verchovsky, A.B., Franchi, I.A., Wright, I.P. and Pillinger, C.T. (2002) Light element geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites. Meteorit. Planet. Sci., 37, 713–735.

    Google Scholar 

  • Goel, A., Howard, J.B. and Vander Sande, J.B. (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon, 42, 1907–1915.

    Article  CAS  Google Scholar 

  • Heymann, D. (1997) Fullerenes and fulleranes in meteorites revisited. Astrophys. J., 489, L111–L114.

    Article  CAS  Google Scholar 

  • Holweger, H. (1977) The solar Na/Ca and S/Ca ratios: A close comparison with carbonaceous chondrites. Earth Planet. Sci. Lett., 34, 152–154.

    Article  CAS  Google Scholar 

  • Jenniskens, P., Rietmeijer, F.J.M., Brosch, N. and Fonda. M. (Eds.) (2000) Leonid Storm Research, 606p., Kluwer Academic Publishers, Dordrecht, the Netherlands.

    Google Scholar 

  • Jessberger, E.K., Stephan, T., Rost, D., Arndt, P., Maetz, M., Stadermann, F.J., Brownlee, D.E., Bradley, J. and Kurat, G. (2001) Properties of interplanetary dust information from collected samples. In Interplanetary Dust, E. Grün, B.Ã….S. Gustafson, S.F. Dermott and H. Fechtig, Eds., 253–294, Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Joswiak, D.J. and Brownlee, D.E. (2001) Carbonate mineralogy in stratospheric IDPs: Compositions, co-existing smectite and comparison to CI carbonaceous chondrites. Lunar Planet. Sci., 32, abstract #1998, Lunar and Planetary Institute, Houston, Texas, USA (CDROM).

    Google Scholar 

  • Keller, L.P., Messenger, S. and Bradley, J.P. (2000) Analysis of a deuterium-rich interplanetary dust particle and implications for presolar materials in IDPs. J. Geophys. Res. Space Phys., 105(A5), 10397–10402.

    Article  CAS  Google Scholar 

  • Kemper, F., Jäger, C., Waters, L.B.F.M., Henning, Th., Molster, F.J., Barlow, M.J., Lim, T. and de Koter, A. (2002) Detection of carbonates in dust shells around evolved stars. Nature, 415, 295–297.

    Article  CAS  Google Scholar 

  • Kurat, G., Koeberl, C., Preper, T., Brandstätter, F. and Maurette, M. (1994) Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta, 58, 3879–3904.

    Article  CAS  Google Scholar 

  • Lewis, R.S., Ming, T., Wacker, J.F., Anders, A. and Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 326, 160–162.

    Article  CAS  Google Scholar 

  • Lewis, R.S., Anders, A. and Draine, B.T. (1989) Properties, detectability and origin of interstellar diamonds in meteorites. Nature, 339, 117–121.

    Article  CAS  Google Scholar 

  • Mackinnon, I.D.R. and Rietmeijer, F.J.M. (1987) Mineralogy of chondritic interplanetary dust particles. Revs. Geophys., 25, 1527–1553.

    CAS  Google Scholar 

  • Maurette, M., Jéhanno, C., Robin, E. and Hammer, C. (1987) Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap. Nature, 328, 699–702.

    Article  Google Scholar 

  • Messenger, S. and Walker, R.M. (1997) Evidence for molecular cloud material in meteorites and interplanetary dust. In Astrophysical implications of the laboratory study of presolar materials, T.J. Bernatowicz and E.K. Zinner, Eds., Amer. Inst. Phys. Conf. Proc., 402, 545–564, American Institute of Physics Press,. Woodbury, New York, USA.

    Google Scholar 

  • Messenger, S. Keller, L.P., Stadermann, F, Walker, R.M. and Zinner, E. (2003) Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 200, 105–108.

    Article  Google Scholar 

  • Murata, Y., Kato, N., Fujiwara, K., and Komatsu, K. (1999) Solid-state {4+2} cycloaddition of fullerene C60 with condensed aromatics using a high-speed milling technique. J. Org. Chem., 64, 3483–34

    Article  CAS  Google Scholar 

  • Núñez Regueiro, M., Monceau, P. and Hodeau, J-L. (1992) Crushing C60 to diamond at room temperature. Nature, 355, 237–239.

    Article  Google Scholar 

  • Nuth, J.A. (1987a) Small-particle physics and interstellar diamonds. Nature, 329, 589.

    Article  Google Scholar 

  • Nuth, J.A. (1987b) Are small diamonds thermodynamically stable in the interstellar medium? Astrophys. Space Sci., 139, 103–109.

    Article  CAS  Google Scholar 

  • Pizzarello, S., Hang, Y., Becker, L., Podera, R.J., Nieman, R.A., Cooper, G. and Williams, M. (2001) The organic content of the Tagish Lake meteorite. Science, 293, 2236–2239.

    Article  CAS  Google Scholar 

  • Radicati di Brozolo, F., Bunch, T.E., Fleming, R.H. and Macklin, J. (1994) Fullerenes in an impact crater on the LDEF spacecraft. Nature, 369, 37–40.

    Article  CAS  Google Scholar 

  • Raynal, P.I., Quirico, E., Borg, J., d’Hendecourt, L. (2001) Micro-Raman survey of the carbonaceous matter structure in stratospheric IDPS and carbonaceous chondrites. Lunar Planet. Sci., 32, abstract #1341, Lunar and Planetary Institute, Houston, Texas, USA (CDROM).

    Google Scholar 

  • Rietmeijer, F.J.M. (1992a) Carbon petrology in cometary dust. In Asteroids, Comets, Meteors 1991, A. Harris, E. Bowell, Eds., 513–516, Lunar and Planetary Institute, Houston, Texas, USA.

    Google Scholar 

  • Rietmeijer, F.J.M. (1992b) Pregraphitic and poorly graphitised carbons in porous chondritic micrometeorites. Geochim. Cosmochim. Acta, 56, 1665–1671.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. (1998a) Interplanetary Dust Particles. In Planetary Materials, J.J. Papike, Ed., Revs. Mineral., 36, 2-1–2-95, Mineralogical Society of America, Washington, D.C., USA.

    Google Scholar 

  • Rietmeijer, F.J.M. (1998b) Interplanetary Dust. In Adv Mineral., Vol. 3, A.S. Marfunin, Ed., 22–28, Springer Verlag, Berlin-Heidelberg, Germany.

    Google Scholar 

  • Rietmeijer, F.J.M. (2000a) Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites. Meteorit. Planet. Sci., 35, 1025–1041.

    CAS  Google Scholar 

  • Rietmeijer, F.J.M. (2000b) Interplanetary dust particles. In McGraw-Hill Yearbook of Science & Technology 2001, 208–211, The McGraw-Hill Companies Inc.

    Google Scholar 

  • Rietmeijer, F.J.M. (2002) The earliest chemical dust evolution in the solar nebula. Chemie der Erde, 62, 1–45.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. (2005) Iron-sulfides and layer silicates: A new approach to aqueous processing of organics in interplanetary dust particles, CI and CM meteorites. Adv. Space Res., in press; available on-line. doi:10.1016/j.asr.2004.11.024

    Google Scholar 

  • Rietmeijer, F.J.M. and Mackinnon, I.D.R. (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature, 316, 733–736.

    Article  Google Scholar 

  • Rietmeijer, F.J.M. and Mackinnon, I.D.R. (1987) Metastable carbon in two chondritic porous interplanetary dust particles. Nature, 326, 162–165.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M. and Nuth III, J.A. (2005) Laboratory simulation of Mg-rich ferro-magnesiosilica dust:The first building blocks of comet dust. Adv. Space Res., in press; available on-line doi:10.1016/j.asr.2005.03.113.

    Google Scholar 

  • Rietmeijer, F.J.M., Nuth III, J.A. and Karner, J.M. (1999) Metastable eutectic condensation in a Mg-Fe-SiO-H2-O2 vapor: Analogs to circumstellar dust. Astrophys. J., 527, 395–404.

    Article  CAS  Google Scholar 

  • Rietmeijer, F.J.M., Rotundi, A. and Heymann, D. (2004) C60 and giant fullerenes in soot condensed in vapors with variable C/H2 ratio. Fullerenes, Nanotubes, and Carbon Nanostructures, 12, 659–680.

    Article  CAS  Google Scholar 

  • Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P. and Bussoletti, E. (1998) Identification of carbon forms in soot materials of astrophysical interest. Astron. Astrophys., 329, 1087–1096.

    CAS  Google Scholar 

  • Sandford, S.A. (1986) Acid dissolution experiments: Carbonates and the 6.8-micrometer bands in interplanetary dust particles. Science, 231, 1540–1541.

    Article  CAS  Google Scholar 

  • Sandford, S.A. (1987) The collection and analysis of extraterrestrial dust particles. Fundamentals Cosmic Phys., 12, 1–73.

    Google Scholar 

  • Soderblom, L.A., Becker, T.L., Bennett, G., Boice, D.C., Britt, D.T., Brown, R.H., Buratti, B.J., Isbell, C., Giese, B., Hare, T., Hicks, M.D., Howington-Kraus, E., Kirk, R.L., Lee, M., Nelson, R.M., Oberst, J., Owen, T.C., Rayman, M.D., Sandel, B.R., Stern, S.A., Thomas, N. and Yelle R.V. (2002) Observations of Comet 19P/Borrelly by the Miniature Integrated Camera and Spectrometer Aboard Deep Space 1. Science, 296, 1087–1091.

    Article  CAS  Google Scholar 

  • Taylor, R., Parsons, J.P., Avent, A.G., Rannard, S.P., Dennis, T.J., Hare, J.P., Kroto, H.W., Walton, D.R.M. (1991) Degradation of C60 by light. Nature, 351, 277.

    Article  CAS  Google Scholar 

  • Taylor, S. and Brownlee, D.E. (1991) Cosmic spherules in the geological record. Meteoritics, 26, 203–211.

    CAS  Google Scholar 

  • Taylor, S., Lever, J.H. and Harvey R.P. (2000) Numbers, types, and compositions if an unbiased collection of cosmic spherules. Meteorit. Planet. Sci., 35: 651–666.

    CAS  Google Scholar 

  • Thomas, K.L., Keller, L.P. and McKay, D.S. (1996) A comprehensive study of major, minor, and light element abundances in over 100 interplanetary dust particles. In Physics, Chemistry and Dynamics of Interplanetary Dust, B.Ã….S. Gustafson and M.S. Hanner, Eds. Astron. Soc. Pacific Conf. Series, 104, 283–286, Astron Soc Pacific, San Francisco, California, USA.

    Google Scholar 

  • Tielens, A.G.G.M., Seab, C.G., Hollenbach, D.J. and McKee, C.F. (1987) Shock processing of interstellar dust: Diamonds in the sky. Astrophys. J., 319, L109–L113.

    Article  CAS  Google Scholar 

  • Tomeoka, K., Kiriyama, K., Nakamura, K., Yamahana, Y. and Sekine, T. (2003) Interplanetary dust from the explosive dispersal of hydrated asteroids by impacts. Nature, 423, 60–62.

    Article  CAS  Google Scholar 

  • Westphal, A.J. and Bradley, J.P. (2004) Formation of glass with embedded metal and sulfides from shock-accelerated crystalline dust in superbubbles. Astrophys. J., 617, 1131–1141.

    Article  CAS  Google Scholar 

  • Zolensky, M.E., Wilson, T.L., Rietmeijer, F.J.M. and Flynn, G.J. (Eds.) (1994) Analysis of Interplanetary Dust, Am Inst. Phys. Conf. Proc., 310, 357p., American Institute of Physics Press, Woodbury, NY, USA.

    Google Scholar 

  • Zwanger, M.S., Banhart, F. and Seeger, A. (1996) Formation and decay of spherical concentric-shell carbon clusters. J Crystal Growth, 163, 445–454.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Rietmeijer, F.J.M. (2006). Fullerenes and Nanodiamonds in Aggregate Interplanetary Dust and Carbonaceous Meteorites. In: Natural Fullerenes and Related Structures of Elemental Carbon. Developments in Fullerene Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4135-7_7

Download citation

Publish with us

Policies and ethics